• Title/Summary/Keyword: polymerization time

Search Result 515, Processing Time 0.021 seconds

Evaluation of New LED Curing Light on Resin Composite Polymerization (발광 다이오드 광중합기의 복합레진 중합 평가)

  • Kang, Jieun;Jun, Saeromi;Kim, Jongbin;Kim, Jongsoo;Yoo, Seunghoon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.41 no.2
    • /
    • pp.152-156
    • /
    • 2014
  • The purpose of this study is to compare efficiency of broad spectrum LEDs ($VALO^{(R)}$, Ultradent, USA) with conventional LED curing lights ($Elipar^{TM}$ Freelight 2, 3M ESPE, USA) using a microhardness test. The light curing units used were $VALO^{(R)}$ in three different modes and $Elipar^{TM}$ Freelight 2. The exposure time was used according to the manufacturer's instructions. After cured resin specimens were stored in physiological saline at $37^{\circ}C$ for 24 hours, microhardness was measured using Vickers microhardness tester. The microhardness of upper and lower sides of the specimens were analyzed separately by the ANOVA method (Analysis of Variance) with a significance level set at 5%. At upper side of resin specimens, an increased microhardness was observed in the broad spectrum LED curing light unit with a high power mode for 4 seconds and plasma emulation mode for 20 seconds (p < 0.05). However, at the lower side of resin specimens, there were no significant differences in microhardness between broad spectrum LED curing light unit and conventional LED curing light unit.

Fabrication of Microstructures Using Double Contour Scanning (DCS) Method by Two-Photon Polymerization (이광자 광중합의 윤곽선 스캐닝법에 의한 마이크로 입체형상 제작)

  • Park Sang Hu;Lim Tae Woo;Lee Sang Ho;Yang Dong-Yol;Kong Hong Jin;Lee Kwang-Sup
    • Polymer(Korea)
    • /
    • v.29 no.2
    • /
    • pp.146-150
    • /
    • 2005
  • A nano-stereolithouaphy (NSL) apparatus has been developed for fabrication of microstructures with the resolution of 150 nanometers. In the NSL process, a complicated 3D structure can be fabricated by building layer by layer, so it does not require any sacrificial layer or any supporting structure. A laminated layer was fabricated by means of solidifying liquid-state monomers using two-photon absorption (TPA) which was induced by a femtosecond laser. When the fabrication of a 3D laminated structure was finished, unsolidified liquid-stage resins were removed to develop the fabricated structure by dropping several droplets of solvent, then the polymerized structure was only left on the glass substrate. A microstructure is fabricated by vector scanning method to save the fabrication time. The shell thickness of a structure is very thin within 200 nm, when it is fabricated by a single contour scanning (SCS) path. So, a fabricated structure can be deformed easily in the developing process. In this work, a double contour scanning (DCS) method was proposed to reinforce the strength of a shell typed structure, and a microcup was fabricated to show the usefulness of the developed NSL system and the DCS method.

Synthesis and Application of Melamine-Type Superplasticizer at the Different Synthetic Conditions (멜라민계 고유동화제의 다양한 조건에서의 합성 및 응용)

  • Yoon Sung-Won;Shin Kyoung-Ho;Rho Jae-Seong
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.811-818
    • /
    • 2005
  • It is well known that the fluidity and the fluidity loss of fresh concrete are affected by the kind of organic admixtures. Organic admixture can improve the properties of concrete. Sulfonated Naphthalene-Formaldehyde(SNF) Superplasticizer is used representatively, but has a problem in fluidity loss. In this study, we synthesized the Sulfonated Melamine-Formaldehyde(SMF) superplasticizer at the various synthetic conditions and compared the physical properties with SMF superplasticizer. SW superplasticizer is synthesized with four synthetic steps. Step 1 is hydroxymethylation, Step. 2 is Sulfonation, Step. 3 is Polymerization and Step. 4 is Stabilization. Synthesis of SMF superplasticizer depends on pH, temperature and reaction time. In this reaction, we changed the mole ratio of melamine to formaldehyde at 1:3, 1:4, and the amount of acid catalyst at Step. 3. After application of SMF superplasticizer and its mixture with SNF superplasticizer to cement pastes and mortars, we measured the physical properties of them at the different dosages(0.5, 1.0, 1.5 wt%) to cement. All samples including superplasticizer showed higher compressive strengths and slump, smaller pore size and porosity than CEM

Optimization of Synthesis Condition and Determination of Residue for Polyamine Type Flocculant (폴리아민계 고분자 응집제의 합성조건 최적화 및 잔류물분석)

  • Choi, Soo-Young;Park, Lee-Soon;Im, Sung-Hyun;Ryoo, Jae-Jeong;Choi, Sang-June;Hwang, Won-Joo
    • Applied Chemistry for Engineering
    • /
    • v.9 no.7
    • /
    • pp.1043-1046
    • /
    • 1998
  • Aluminium based inorganic flocculants are extensively used in this country in the removal of fine particles present in the raw water for the production of drinking water. These inorganic flocculants, however, have potential hazard of high residual aluminium ions in the treated waters, which is known to be one of the reasons of alzheimer's disease. Inorganic flocculants alone are sometimes incapable of treating water when there are excessive turbidity in the raw water sources due to flooding. A polyamine type polymeric flocculant has long been used to treat raw water in the drinking water production in the European countries and United State of America. The optimum reaction conditions such as mole ratio of epichlorohydrin(EPI) to dimethylamine(DMA), reaction temperature and time for each stage for the pilot scale preparation of polyamine from EPI-DMA was studied in this work. The variation of intrinsic viscosity and flocculating efficiency in the water treatment of the synthesized polyamines were evaluated. The residual materials after polymerization reaction were analyzed by gas chromatography to study the effect of variation of reaction conditions.

  • PDF

Synthesis of β-Galactooligosaccharide Using Bifidobacterial β-Galactosidase Purified from Recombinant Escherichia coli

  • Oh, So Young;Youn, So Youn;Park, Myung Soo;Kim, Hyoung-Geun;Baek, Nam-In;Li, Zhipeng;Ji, Geun Eog
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.8
    • /
    • pp.1392-1400
    • /
    • 2017
  • Galactooligosaccharides (GOSs) are known to be selectively utilized by Bifidobacterium, which can bring about healthy changes of the composition of intestinal microflora. In this study, ${\beta}-GOS$ were synthesized using bifidobacterial ${\beta}-galactosidase$ (G1) purified from recombinant E. coli with a high GOS yield and with high productivity and enhanced bifidogenic activity. The purified recombinant G1 showed maximum production of ${\beta}-GOSs$ at pH 8.5 and $45^{\circ}C$. A matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis of the major peaks of the produced ${\beta}-GOSs$ showed MW of 527 and 689, indicating the synthesis of ${\beta}-GOSs$ at degrees of polymerization (DP) of 3 and DP4, respectively. The trisaccharides were identified as ${\beta}-{\text\tiny{D}}$-galactopyranosyl-($1{\rightarrow}4$)-O-${\beta}-{\text\tiny{D}}$-galactopyranosyl-($1{\rightarrow}4$)-O-${\beta}-{\text\tiny{D}}$-glucopyranose, and the tetrasaccharides were identified as ${\beta}-{\text\tiny{D}}$-galactopyranosyl-($1{\rightarrow}4$)-O-${\beta}-{\text\tiny{D}}$-galactopyranosyl-($1{\rightarrow}4$)-O-${\beta}-{\text\tiny{D}}$-galactopyranosyl-($1{\rightarrow}4$)-O-${\beta}-{\text\tiny{D}}$-glucopyranose. The maximal production yield of GOSs was as high as 25.3% (w/v) using purified recombinant ${\beta}-galactosidase$ and 36% (w/v) of lactose as a substrate at pH 8.5 and $45^{\circ}C$. After 140 min of the reaction under this condition, 268.3 g/l of GOSs was obtained. With regard to the prebiotic effect, all of the tested Bifidobacterium except for B. breve grew well in BHI medium containing ${\beta}-GOS$ as a sole carbon source, whereas lactobacilli and Streptococcus thermophilus scarcely grew in the same medium. Only Bacteroides fragilis, Clostridium ramosum, and Enterobacter cloacae among the 17 pathogens tested grew in BHI medium containing ${\beta}-GOS$ as a sole carbon source; the remaining pathogens did not grow in the same medium. Consequently, the ${\beta}-GOS$ are expected to contribute to the beneficial change of intestinal microbial flora.

Solvent-Polymer Interactions for Stable Non-Aqueous Graphene Dispersions in the Presence of PVK-b-PVP Block Copolymer (PVK-b-PVP 블록 공중합체의 존재 하에서 안정한 비 수계 그래핀 분산액을 위한 용매-고분자 상호작용에 관한 연구)

  • Park, Kyung Tae;Perumal, Suguna;Lee, Hyang Moo;Kim, Young Hyun;Cheong, In Woo
    • Journal of Adhesion and Interface
    • /
    • v.18 no.3
    • /
    • pp.109-117
    • /
    • 2017
  • Poly(N-vinyl carbazole) (PVK) homopolymer, poly(4-vinylpyridine) (PVP) homopolymer, and PVK-b-PVP block copolymer were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization and the polymers were used to prepare non-aqueous graphene dispersions with four different solvents, ethanol, N-methyl-2-pyrrolidone (NMP), dichloromethane (DCM), and tetrahydrofuran (THF). $^1H-$ and $^{13}C-NMR$ spectroscopy, size exclusion chromatography (SEC), and differential scanning calorimetry (DSC) were carried out to confirm the chemical structure of the polymers. Stability of graphene dispersions was measured by on-line turbidity measurement. Time-dependent Turbiscan Stability Index (TSI) values were interpreted in terms of surface tension (${\sigma}$) and solubility parameter (${\delta}$) among solvents, polymers, and graphene. It was confirmed that the solubilities of polymer and surface tension between solvent and graphene affected the dispersion stability of graphene. PVK-b-PVP block copolymer could effectively maintain the low TSI values of graphene dispersions in ethanol and THF, which have been known as poor solvents for graphene dispersions. It can also be noted that DCM shows good dispersion stability comparable to NMP, which has been known as the best solvent for graphene dispersion.

Copolymerization of Ethylene and 1-Hexene via Polymethylene Bridged Cationic Dinuclear Constrained Geometry Catalysts (폴리메틸렌 다리로 연결된 양이온 이핵 CGC를 이용한 에틸렌과 1-헥센의 공중합)

  • Bian, Feng Ling;Que, Dang Hoang Dan;Lyoo, Won-Seok;Lee, Dong-Ho;Noh, Seok-Kyun;Kim, Yong-Man
    • Polymer(Korea)
    • /
    • v.31 no.6
    • /
    • pp.497-504
    • /
    • 2007
  • We have prepared the dinuclear half-sandwich CGC(constrained geometry catalyst) with polymethylene bridge $[Zr(({\eta}^5\;:\;{\eta}^1-C_9H_5SiMe_2NCMe_3)Me_2)_2\;[(CH_2)_n]$ [n=6(4), 9(5), 12(6)] by treating 2 equivalents of MeLi with the corresponding dichlorides compounds. To study the catalytic behavior of the dinuclear catalysts we conducted copolymerization of ethylene and 1-hexene in the presence of three kinds of boron cocatalysts, $Ph_3C^+[B(C_6F_5)_4]^-\;(B_1),\;B(C_6F_5)_3\;(B_3)$, and $Ph_3C^+[(C_6F_5)_3B-C_6F_4-B(C_6F_5)_3]^{2-}\;(B_2)$. It turned out that all active species formed by the combination of three dinuclear CGCs with three cocatalyst were very efficient catalysts for the polymerization of olefins. The activities increase as the bridge length of the dinuclear CGCs increases. At the same time the dinuclear cocatalyst exhibited the lowest activity among three cocatalysts. The prime observation is that the dinuclear cocatalyst gave rise to the formation of the copolymers with the least branches on the polyethylene backbone.

Preparation of Composite Particles via Electroless Nickel Plating on Polystyrene Microspheres and Effect of Plating Conditions (무전해 니켈 도금된 폴리스티렌 복합 입자 제조 및 도금 조건의 영향)

  • Kim, Byung-Chul;Park, Jin-Hong;Lee, Seong-Jae
    • Polymer(Korea)
    • /
    • v.34 no.1
    • /
    • pp.25-31
    • /
    • 2010
  • Polymer core and metal shell composite particles have been prepared by the electroless nickel plating on the surface of monodisperse polystyrene microspheres. Various sizes of polystyrene particles with highly monodisperse state could be synthesized by controlling the dispersion medium in dispersion polymerization. Electroless nickel plating was performed on the polystyrene particle with diameter of $3.4\;{\mu}m$. The morphology of polystyrene/nickel composite particles was investigated to see the effect of the plating conditions, such as the $PdCl_2$ and glycine concentrations and the dropping rate of nickel plating solution, on nickel deposition. With $PdCl_2$ and glycine concentrations at more than 0.4 g/L and 1 M, respectively, more uniform nickel layer and less precipitated nickel aggregates were formed. At the given plating time of 2 h, the same amount of plating solution was introduced by varying the dropping rate. Though the effect of dropping rate on particle morphology was not noticeable, the dropping rate of 0.15 mL/min for 60 min showed rather uniform plating.

Composition Changes in Cement Matrix of RC Column Exposed to Fire (화재에 노출된 RC기둥 시멘트 매트릭스의 구성성분 변화)

  • Kim, Jung-Joong;Youm, Kwang-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.3
    • /
    • pp.369-375
    • /
    • 2014
  • This study examined the changes of microstructural compositions in cement matrix according to the depth from the surface of a reinforced concrete (RC) column exposed to fire. The RC column was exposed to a standard fire for 180 minutes. After the fire test, core samples passing through the column section were obtained. Using the core samples, the remaining fractions of calcium-silicate-hydrates (C-S-H) and calcium hydroxide in cement matrix at the surface, the depth of 40 mm and 80 mm and the center (175 mm) were examined using thermal gravimetric analysis (TGA) and X-ray diffraction analysis (XRDA). Using nuclear magnetic resonance (NMR) technique, the silicate polymerization of C-S-H in cement matrix was also evaluated. The experimental results indicated that the amount of C-S-H loss at the center of column experiencing the transferred fire temperature of $236^{\circ}C$ has been underestimated as the TGA results showed the highest C-S-H contents are located at the depth of 80 mm, where the transferred fire temperature is $419^{\circ}C$. Moreover, the destruction of silicate connections at the center was observed as similar as that at the depth of 40 mm, where the transferred fire temperature was $618^{\circ}C$. This might be attributed to the temperature changes during cooling time after the fire test was neglected. Due to the relatively low thermal conductivity of concrete, the high temperature, which can affect the change of microstructure in cements, will hold longer at the center of the column than other depth.

Setting Shrinkage, Thermal Expansion Coefficient and Compressive Strength of Recycled PET Polymer Concrete with Montmorillonite (몬모릴로라이트를 이용한 재활용 PET폴리머 콘크리트의 경화수축, 온도팽창계수, 압축강도)

  • Jo Byong-Wan;Tae Ghi-Ho;Lee Du-Wha
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.2 s.80
    • /
    • pp.205-212
    • /
    • 2004
  • Recently, as concerns over environmental issues are raised more and more trend to use recycled waste for producing construction materials is also raised. Especially, a case of waste resin is considerably destroying the environment due to disposal way that most waste resin produced is disposed of landfill. This study is performed by polymer concrete with recycled PET resin in terms of obtaining safely clean construction resources and protection of environment. High setting shrinkage and sensitivity to heat are main disadvantages of Polymer Concrete (PC) despites of a lot merits. The aim of this study is to investigate basic properties such as setting shrinkage, length change and sensitivity to heat about PET recycled polymer concrete. The other is to check the possibility of use of Montmorillonite as one of a lot of additive without special coupling agent. As results of experiments, various properties of polymer concrete with recycled PET resin are similar with conventional PC except that polymerization time is longer. Montmorillonite was efficiently used to reduce setting shrinkage, length change and coenicient of thermal expansion related to heat with enhanced strength