Browse > Article

Copolymerization of Ethylene and 1-Hexene via Polymethylene Bridged Cationic Dinuclear Constrained Geometry Catalysts  

Bian, Feng Ling (School of Display and Chemical Engineering, Yeungnam University)
Que, Dang Hoang Dan (School of Display and Chemical Engineering, Yeungnam University)
Lyoo, Won-Seok (School of Textiles, Yeungnam University)
Lee, Dong-Ho (Department of Polymer Science and Engineering, Kyungpook National University)
Noh, Seok-Kyun (School of Display and Chemical Engineering, Yeungnam University)
Kim, Yong-Man (PE Research Center)
Publication Information
Polymer(Korea) / v.31, no.6, 2007 , pp. 497-504 More about this Journal
Abstract
We have prepared the dinuclear half-sandwich CGC(constrained geometry catalyst) with polymethylene bridge $[Zr(({\eta}^5\;:\;{\eta}^1-C_9H_5SiMe_2NCMe_3)Me_2)_2\;[(CH_2)_n]$ [n=6(4), 9(5), 12(6)] by treating 2 equivalents of MeLi with the corresponding dichlorides compounds. To study the catalytic behavior of the dinuclear catalysts we conducted copolymerization of ethylene and 1-hexene in the presence of three kinds of boron cocatalysts, $Ph_3C^+[B(C_6F_5)_4]^-\;(B_1),\;B(C_6F_5)_3\;(B_3)$, and $Ph_3C^+[(C_6F_5)_3B-C_6F_4-B(C_6F_5)_3]^{2-}\;(B_2)$. It turned out that all active species formed by the combination of three dinuclear CGCs with three cocatalyst were very efficient catalysts for the polymerization of olefins. The activities increase as the bridge length of the dinuclear CGCs increases. At the same time the dinuclear cocatalyst exhibited the lowest activity among three cocatalysts. The prime observation is that the dinuclear cocatalyst gave rise to the formation of the copolymers with the least branches on the polyethylene backbone.
Keywords
constrained geometry catalyst; ethylene copolymerization; cationic dinuclear metallocene;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 J. Schellenberg, Adv. Polym. Tech., 16, 135 (1997)
2 W. Fan and M. W. Robert, Macromolecules, 34, 8619 (2001)   DOI   ScienceOn
3 W. J. Wang, E. Kolodka, S. Zhu, A. E. Hamielec, and L. K. Kostanski, Macromol Chem. Phys., 200, 2146 (1999)
4 H. Hong, Z. Zhang, T. C. M. Chung, and R. W. Lee, Polym. Chem., 45, 639 (2007)   DOI   ScienceOn
5 S. Y. Lai, J. R. Wilson, G. W. Knight, J. C. Stevens, and P. W. Chum, U.S. Patent 5,272,236 (1993)
6 S. K. Noh, M. J. Lee, D. H. Kum, K. S. Kim, W. S. Lyoo, and D. H. Lee, J. Polytn. Sci; Part A, 42, 1712 (2004)   DOI   ScienceOn
7 L. Li, M. V. Mets, H. Li, M. C. Chen, T. J. Marks, L. Liable-Sands, and A. L. Rheingold, J. Am. Chem. Soc., 124, 12725 (2002)
8 S. K. Noh, W. L. Jiang, and D. H. Lee, Mscromol. Res., 12, 100 (2004)   DOI
9 M. R. Jeffrey, E. C. Anna, and W. C. Geoffrey, J. Am. Chem. Soc., 128, 4186 (2006)   DOI   ScienceOn
10 S. K. Noh, J. M. Lee, and D. H. Lee, J. Organomet. Chem., 667, 53 (2003)   DOI
11 H. Li, L. Li, and T. J. Marks, Angew. Chem. Int. Engl, 43, 4937 (2004)   DOI   ScienceOn
12 W. J. Kaminsky, Chem. Soc. Dalton Trsns., 1412 (1998)
13 S. K. Noh, S. Kim, D. H. Lee, K. B. Yoon, and H. B. Lee, Bull Kor. Chem. Soc., 18, 618 (1997)
14 C. Carlini, A. D'Alessio, S. Ciaiacopi, P. Riccardo, M. Pracella, A. Maria, R. Galletti, and G. Sbrana, Polymer, 48, 1185 (2007)   DOI   ScienceOn
15 P. Starck, A. Malmberg, and B. Lofgren, J. Appl. Polym. Chem., 83, 1140 (2002)
16 G. A. Helmut and A. Kopopl, Chem. Rev., 100, 1205 (2000)