• Title/Summary/Keyword: polymerization shrinkage

검색결과 121건 처리시간 0.022초

Measurements of shrinkage stress and reduction of intercuspal distance in maxillary premolars resulting from polymerization of composites and compomers

  • Lee, Soon-Young;Park, Sung-Ho
    • 대한치과보존학회:학술대회논문집
    • /
    • 대한치과보존학회 2003년도 제120회 추계학술대회 제 5차 한ㆍ일 치과보존학회 공동학술대회
    • /
    • pp.563-563
    • /
    • 2003
  • The purpose of present study was to evaluate the polymerization shrinkage stress and cuspal deflection in maxillary premolars resulting from polymerization shrinkage of composites and compomers. 1)Measurements of polymerization shrinkage stress. For measurements of polymerization shrinkage stress, Stress measuring machine(R&B, Daejon, Korea) was used. Composites and compomers which were used in this study were as follows:(omitted)

  • PDF

복합레진의 초기 동적 체적 중합수축의 실시간 측정 -새로운 측정장치의 개발에 대한 소고- (A NEW METHOD - REAL TIME MEASUREMENT OF THE INITIAL DYNAMIC VOLUMETRIC SHRINKAGE OF COMPOSITE RESINS DURING POLYMERIZATION)

  • 이인복
    • Restorative Dentistry and Endodontics
    • /
    • 제26권2호
    • /
    • pp.134-140
    • /
    • 2001
  • The polymerization shrinkage of composite resins is an important drawback although the composites have many advantages-more esthetic and conservative than metallic restoratives etc. The purposes of this research were to develop a new measurement method and to manufacture an instrument that can measure the initial dynamic volumetric shrinkage of composite resins during polymerization. The instrument was basically an electromagnetic balance that constructed with a force transducer using position sensitive photo detector(PSPD) and a negative feedback servo amplifier of proportional-derivative(PD) controller. The volumetric change of composites during polymerization was detected continuously as buoyancy change in distilled water by means of Archimedes's principle. It was converted to continuous electrical voltage signal in real time. The signal was properly conditioned and filtered and then it was stored in computer by a data acquisition(DAQ) board. By using this electronic instrument. the dynamic patterns of the polymerization shrinkage of eight commercial(Z-100, DenFil, AeliteFil, Z-250, P-60, SureFil, Synergy compact, and Tetric ceram) composite resins were measured and compared. The results were as follows. 1. From this project of developing instrument, the ability has been achieved that can acquire and process data of electrical signal transformed from various physical phenomenon by using temperature, displacement. photo. and force transducer. As a consequence, the instrumentation and measurement system used to analyze the physical characteristics of various dental materials in dental research field can be designed, manufactured and implemented in lab. 2. This instrument has some advantages. It was insensible to temperature change and could measure true dynamic volumetric shrinkage in real time without complicated process. It showed accuracy and high precision results with small standard deviation. 3. The polymerization shrinkage of composites was significantly different between brands and ranged from 2.47% to 3.89%, The order of polymerization shrinkage was as follows, in order of increasing shrinkage, SureFil, P60, Z250, Z100, Synergy compact. DenFil, Tetric ceram, and AeliteFil. 4. The polymerization shrinkage rate per unit time, dVol%/dt, showed that the instrument can provide an indirect research method for polymerization reaction kinetics.

  • PDF

광중합형 구치부 수복재료의 중합수축량과 중합수축력 (AMOUNT OF POLYMERIZATION SHRINKAGE AND SHRINKAGE STRESS IN COMPOSITES AND COMPOMERS FOR POSTERIOR RESTORATION)

  • 박성호;이순영;조용식;김수선;이창재;김영주;이봉희;이광성;노병덕
    • Restorative Dentistry and Endodontics
    • /
    • 제28권4호
    • /
    • pp.348-353
    • /
    • 2003
  • The purpose of present study was to evaluate the polymerization shrinkage stress and amount of linear shrinkage of composites and compomers for posterior restoration. For this purpose, linear polymerization shrinkage and polymerization stress were measured. For linear polymerization shrinklage and polymerization stress measurement, custom made Linometer (R&B, Daejon, Korea) and Stress measuring machine was used (R&B, Daejon, Korea). Compositers and compomers were evaluated: Dyract AP (Dentsply Detrey, Gumbh. German) Z100 (3M Dental Products, St. Paul. USA) Surefil (Dentsply Caulk, Milford, USA) Pyramid (Bisco, Schaumburg, USA) Synergy Compact (Coltene, Altstatten, Switzerland), Heliomolar (Vivadent/Ivoclar, Liechtenstein), and Compoglass (Vivadent Ivoclar/Liechtenstein) were used. 15 measurements were made for each material. Linear polymerization shrinkage or polymerization stress for each material was compared with one way ANOVA with Tukey at 95% levels of confidence. For linear shrinkage: Heliomolar, Surefil

Silorane 복합레진의 중합수축의 동력학 (POLYMERIZATION SHRINKAGE KINETICS OF SILORANE-BASED COMPOSITES)

  • 권영철;이인복
    • Restorative Dentistry and Endodontics
    • /
    • 제35권1호
    • /
    • pp.51-58
    • /
    • 2010
  • 복합레진이 개발된 이후 많은 물성의 향상이 이루어졌으나 복합레진의 중합수축은 아직 해결되지 않은 주요 단점으로 남아있다. 중합수축이 적은 복합레진을 만들기 위한 많은 노력이 이루어졌고, 최근에 기존의 methacrylate 기질이 아닌 silorane 기질의 복합레진이 개발되었다. 본 연구에서는 silorane 기질의 복합레진과 methacrylate 기질의 복합레진의 중합수축거동을 측정하고 비교하고자 하였다. 온도변화에 민감하지 않으며 실시간으로 복합레진의 체적 중합수축을 측정할 수 있는 계측장치를 제작하여 사용하였다. 5종의 methacrylate 기질의 수복용 복합레진(Beautifil, Z100, Z250, Z350, Gradia X)과 silorane 기질 복합레진 (P90)의 중합수축을 10분 동안 측정하여, 중합수축량, 최대 중합수축률 그리고 최대수축시간을 비교하였다. 복합레진의 중합수축은 제품별로 많은 차이를 보였다. Silorane 기질의 P90복합레진의 중합수축이 1.48%로 가장 낮았고 Beautifil 복합레진의 중합수축이 2.80%로 가장 높았다. Methacrylate 계열의 복합레진 사이에도 중합수축량에 제품별로 유의한 차이를 보였다(p<0.05). 최대 중합수축률은 P90이 0.13%/s로 가장 낮았고 Z100이 0.34%/s로 가장 높았다. 최대 수축시간은 methacrylate기질의 복합레진(2.4-3.1초)에 비해, silorane 기질의 P90 복합레진이 6.7초로 두 배 이상 길었다. 최대중합수축률은 중합수축과 최대수축시간의 역수를 곱한 값과 강한 양의 상관관계를 보였다(R = 0.95).

광중합형 구치부 수복재료의 중합 수축력과 교두 변위의 상관관계 (MEASUREMENTS OF SHRINKAGE STRESS AND REDUCTION OF INTER-CUSPAL DISTANCE IN MAXILLARY PREMOLARS RESULTING FROM POLYMERIZATION OF COMPOSITES AND COMPOMERS)

  • 이순영;박성호
    • Restorative Dentistry and Endodontics
    • /
    • 제29권4호
    • /
    • pp.346-352
    • /
    • 2004
  • The purpose of present study was to evaluate the polymerization shrinkage stress and cuspal deflection in maxillary premolars resulting from polymerization shrinkage of composites and compomers. Composites and compomers which were used in this study were as follows: Dyract AP, Z100, Surefil. Pyramid, Synergy Compact, Heliomolar, Heliomolar HB, and Compoglass F. For measuring of polymerization shrinkage stress, Stress measuring machine (R&B, Daejon, Korea) was used. One-way ANOVA analysis with Duncan's multiple comparison test were used to determine significant differences between the materials. For measuring of cuspal deflection of tooth, MOD cavities were prepared in 10 extracted maxillary premolars. And reduction of intercuspal distance was measured by strain measuring machine (R&B, Daejon, Korea) One-way ANOVA analysis with Turkey test were used to determine significant differences between the materials. Polymerization shrinkage stress is $\mathbb{\ulcorner}$Heliomolar, Z100, Pyramid < Synergy Compact Compoglass F < Dyract AP < Heliomolr HB, surefil$\mathbb{\lrcorner}$ (P < 0.05). And cuspal delfelction is $\mathbb{\ulcorner}$Z100, Heliomolar, Heliomolar HB, Synergy Compact Surefil. < Compoglass F < Pyramid, Dyract AP$\mathbb{\lrcorner}$ (P < 0.05). Measurements of ploymerization shrinkage stress and those of cuspal deflection of the teeth was different. There is no correlation between polymerization shrinkage stress and cuspal deflection of the teeth(p > 0.05).

Silorane-기질 치아 수복용 복합레진의 중합수축과 중합수축응력 (Polymerization Shrinkage and Stress of Silorane-based Dental Restorative Composite)

  • 이인복;박성환;권현정;구자국;최낙삼
    • Composites Research
    • /
    • 제26권3호
    • /
    • pp.182-188
    • /
    • 2013
  • 본 연구의 목적은 silorane 기질의 치아 수복용 복합레진의 중합수축과 수축응력의 동력학을 평가하고 전통적인 methacrylate 기질의 복합레진과 비교하기 위함이다. 두 종의 methacrylate 기질의 복합레진(Z250, Z350 flowable)과 silorane 기질 복합레진(P90)이 사용되었다. 아르키메데스 원리를 응용해 자체 제작한 중합수축 측정 장치를 사용하여 광중합 중 일어나는 복합레진의 체적 중합수축을 측정하였고 스트레인게이지로 중합수축응력을 측정하였다. Silorane 기질 복합레진인 P90의 중합수축과 최대 중합수축률이 가장 낮았고 methacrylate 기질 복합레진인 Z350 flowable이 가장 높았다. Methacrylate 기질의 복합레진과 비교하여 silorane 기질의 복합레진 P90이 최대 수축률에 이른 시간은 더 길었고 중합수축응력은 낮았다.

리노미터를 이용한 할로겐 가시광선 광조사기와 플라즈마 아크 광조사기의 복합레진 및 컴포머의 광중합 양상 비교 (COMPARISON OF LINEAR POLYMERIZATION SHRINKAGE IN COMPOSITES AND COMPOMER POLYMERIZED BY PLASMA ARC OR CONVENTIONAL VISIBLE LIGHT CURING)

  • 이재익;박성호
    • Restorative Dentistry and Endodontics
    • /
    • 제27권5호
    • /
    • pp.488-492
    • /
    • 2002
  • The purpose of this study was to evaluate the effectiveness of plasma arc curing (PAC) unit for composite and compomer curing. To compare its effectiveness with conventional quartz tungsten halogen (QTH) light curing unit, the polymerization shrinkage rates and amounts of three composites (Z100, Z250, Synergy Duo Shade) and one compomer, that had been light cured by PAC unit or QTH unit, was compared using a custome made linometer. The measurement of polymerization shrinkage was peformed after polymerization with either QTH unit or PAC unit. In case of curing with the PAC unit, the composite was light cured with Apollo 95E for 6s, the power density of which was recorded as 1350 mW/$\textrm{cm}^2$ by Coltolux Light Meter. For light curing with QTH unit, the composite was light cured for 30s with the XL2500, the power density of which was recorded as 800 mW/$\textrm{cm}^2$ by Coltolux Light Meter. The amount of linear polymerization shrinkage was recorded in the computer every 0.5s for 60s. Ten measurements were made for each material. The amount of linear polymerization shrinkage for each material in 10s and 60s which were cured with PAC or QTH unit were compared with t test. The amount of polymerization shrinkage in the tested materials were compared with 1way ANOVA with Duncan's multiple range test. As for the amounts of polymerization shrinkage in 60s, there was no difference between PAC unit and QTH unit in Z250 and Synergy Duo Shade. In Z100 and Dyract AP, it was lower when it was cured with PAC unit than when it was cured with QTH unit (p<0.05). As for the amounts of polymerization shrinkage in 10s, there was no difference between PAC unit and QTH unit in Z100 and Dyract AP. The amounts of polymerization shrinkage was significantly higher when it was cured with PAC unit in Z250 and Synergy Duo Shade (p<0.05). The amounts of polymerization shrinkage in the tested materials when they were cured with QTH unit were Z250 (6.6um) < Z100 (9.3um), Dyract AP (9.7um) < Synergy Duo Shade (11.2um) (p<0.05). The amount of polymerization shrinkage when the materials were cured with PAC unit were Dyract AP (5.6um) < Z100 (8.1um), Z250(7.0um) < Synergy Duo Shade (11.2um) (p<0.05).

광조사 강도가 복합레진의 중합반응속도에 미치는 영향에 관한 실시간 체적측정법을 이용한 연구 (EFFECT OF LIGHT INTENSITY ON THE POLYMERIZATION RATE OF COMPOSITE RESIN USING REAL-TIME MEASUREMENT OF VOLUMETRIC CHANCE)

  • 라성호;이인복;김창근;조병훈;이광원;손호현
    • Restorative Dentistry and Endodontics
    • /
    • 제27권2호
    • /
    • pp.135-141
    • /
    • 2002
  • Objectives : The aim of this study is to evaluate the effect of light intensity variation on the polymerization rate of composite resin using IB system (the experimental equipment designed by Dr. IB Lee) by which real-time volumetric change of composite can be measured. Methods : Three commercial composite resins [Z100(Z1), AeliteFil(AF), SureFil(SF)] were photopolymerized with Variable Intensity Polymerizer unit (Bisco, U.S.A.) under the variable light intensity (75/150/225/300/375/450mW$^2$) during 20 sec. Polymerization shrinkage of samples was detected continuously by IB system during 110 sec and the rate of polymerization shrinkage was obtained by its shrinkage data. Peak time(P.T.) showing the maximum rate of polymerization shrinkage was used to compare the polymerization rate. Results : Peak time decreased with increasing light intensity(p<0.05). Maximum rate of polymerization shrinkage increased with increasing light intensity(p<0.05). Statistical analysis revealed a significant positive correlation between peak time and inverse square root of the light intensity (AF:R=0.965, Zl:R=0.974, SF:R=0.927). Statistical analysis revealed a significant negative correlation between the maximum rate of polymerization shrinkage and peak time(AF:R=-0.933, Zl:R=-0.892, SF:R=-0.883), and a significant positive correlation between the maximum rate of polymerization shrinkage and square root of the light intensity (AF:R=0.988, Zl:R=0.974, SF:R=0.946). Discussion and Conclusions : The polymerization rate of composite resins used in this study was proportional to the square root of light intensity Maximum rate of polymerization shrinkage as well as peak time can be used to compare the polymerization rate. Real-time volume method using IB system can be a simple alternative method to obtain the polymerization rate of composite resins.

THE EFFECT OF MONOMER TO POWDER RATIO ON POLYMERIZATION SHRINKAGE-STRAIN KINETICS OF POLYMER-BASED PROVISIONAL CROWN AND FIXED PARTIAL DENTURE MATERIALS

  • Kim, Sung-Hun
    • 대한치과보철학회지
    • /
    • 제45권6호
    • /
    • pp.735-742
    • /
    • 2007
  • Statement of problem. Although a number of previous investigations have been carried out on the polymerization shrinkage-strain kinetics of provisional crown and fixed partial denture (FPD) materials, the effect of the changes of liquid monomer to powder ratio on its polymerization shrinkage-strain kinetics has not been reported. Purpose. The purpose of this study was to investigate the influence of liquid monomer to powder ratio of polymer-based provisional crown and FPD materials on the polymerization shrinkage-strain kinetics. Material and methods. Chemically activated acrylic provisional materials (Alike, Jet, Snap) were investigated. Each material was mixed with different liquid monomer to powder ratios by volume (1.0:3.0, 1.0:2.5, 1.0:2.0, 1.0:1.5, 1.0:1.0). Time dependent polymerization shrinkage- strain kinetics of all materials was measured by the bonded-disk method as a function of time at $23^{\circ}C$. Five recordings were taken for each ratio. The results were statistically analyzed using one-way ANOVA and the multiple comparison Scheffe test at the significance level of 0.05. Trends were also examined by linear regression. Results. At 5 minutes after mixing, the polymerization shrinkage-strains of all materials ranged from only 0.01% to 0.49%. At 10 minutes, the shrinkage-strain of Alike was the highest, 3.45% (liquid monomer to powder ratio=1.0:3.0). Jet and Snap were 2.69% (1.0:2.0) and 1.58% (1.0:3.0), respectively (P>0.05). Most shrinkage (94.3%-96.5%) occurred at 30 minutes after mixing for liquid monomer to powder ratio, ranging from 1.0:3.0 to 1.0:1.0. The highest polymerization shrinkage-strain values were observed for the liquid monomer to powder ratio of 1.0:3.0. At 120 minutes after mixing, the shrinkage-strain values were 4.67%, 4.18%, and 3.07% for Jet, Alike, and Snap, respectively. As the liquid monomer to powder ratio increased, the shrinkage-strain values tend to be decreased linearly (r=-0.769 for Alike, -0.717 for Jet, -0.435 for Snap, $r^2=0.592$ for Alike, 0.515 for Jet, 0.189 for Snap; P<0.05). Conclusion. The increase of the liquid monomer to powder ratio from 1.0:3.0 to 1.0:1.0 had a significant effect on the shrinkage-strain kinetics of polymer-based crown and FPD materials investigated. This increased the working time and decreased the shrinkage-strain during polymerization.

나노필러를 포함하고 있는 복합레진의 중합특성 (Characteristics of polymerization in nanofiller-containing composite resins)

  • 이희경
    • 대한치과기공학회지
    • /
    • 제29권2호
    • /
    • pp.9-15
    • /
    • 2007
  • As the development of nanotechnology, the use of composite resins which containing nanofillers becomes popular. The purpose of this study was to test the degree of polymerization of nanofillercontaining composite resins. For the study, three different nanofiller-containing composite resins and two different light-curing units were used. To evaluate the degree of polymerization, the maximum polymerization shrinkage taking place during the light curing, and the microhardness, after the light curing, were measured. As results, two light-curing units exhibited a similar emission spectrum to that of the included photoinitiator, camphorquinone. The only difference between the light-curing units were the width of the emission spectrum. Three different composite resins showed different microhardness values. Among them, Grandio showed the greatest microhardness value. However, there was less microhardness difference on the top and bottom surfaces due to the difference of the light-curing units. The maximum polymerization shrinkage values were also similar in the tested specimens regardless of the difference of the light-curing units. However, Grandio showed the least polymerization shrinkage. According to the manufacturers' data, Grandio showed the highest filler content(vol%).

  • PDF