• Title/Summary/Keyword: polymerization phase

Search Result 267, Processing Time 0.032 seconds

Studies on the Destructible Surfactants(2);Surface-Active Properties of Cleavable Surfactant with 1, 3-Dioxolane Ring (분해성 계면활성제에 관한 연구(제2보);1, 3-Dioxlane고리를 갖는 분해성계면활성제의 합성)

  • Kim, J.H.;Ha, J.H.;Jeong, N.H.;Nam, K.D.
    • Journal of the Korean Applied Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.101-107
    • /
    • 1995
  • As the surfactants that were used in micellar reaction, emulsion polymerization and phase-transfer reaction etc. have the problems, the cleavable surfactant was converted to inactive compound after such as the reaction in the condition. Because 1, 3-dioxolane ring by ketal or acetal reactioc is lack of stability in acid condition, it is easily made to acid-hydrolysis. And cmc value of the surfactant is assumed $1.0{\times}10^{-5}mol/L$ and surface tension in cmc is 31 dyne/cm. Compared with other surfactant, this surfactant foam property is not better. But emulsion property was relatively good. According as acid-hydrolysis property was observed the interface tension change between aqueous solution and benzene by the variation of pH and time, this surfactant was made to hydrolysis within about 300minutes in pH 1${\sims}$4. Therefore this surfactant is expected to be a good emulsifier that has the bad foam property and the acid-hydrolysis property in acid condition.

Linear Low Density Polyethylene Preparation by Titanium-Based Ziegler-Natta Catalysts (티탄이 기본인 Ziegler-Natta 촉매에 의한 선형저밀도폴리에틸렌의 제조)

  • Dong-Ho Lee;Kyung-Eun Min;Cha-Ung Kim
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.1
    • /
    • pp.110-117
    • /
    • 1987
  • For the preparation of linear low density polyethylene (LLDPE), the copolymerization of ethylene and 1-butene was carried out with various catalysts of titanium alkoxidealkylaluminum compound in slurry phase. The effects of catalyst components, aging time, concentration of catalyst components, polymerization time and temperature on the catalytic activity and copolymer composition were examined. The properties of copolymer obtained were also considered with the correlation to the 1-butene contents. It has been found that the titanium tetra-n-butoxide-diethylaluminum chloride catalyst system was the most suitable for the production of LLDPE with higher catalytic activity, more 1-butene content and less soluble parts. The density, glass transition temperature, melting point and heat of fusion of copolymer were decreased with increasing 1-butene contents.

  • PDF

LiH2PO4 Crystal as a Solid Electrolyte (고체 전해질로서의 LiH2PO4 결정)

  • Lee, Kwang-Sei;Cho, Joong-Seok;Kim, Geum-Chae;Jeon, Min-Hyon
    • Korean Journal of Materials Research
    • /
    • v.19 no.4
    • /
    • pp.220-223
    • /
    • 2009
  • Lithium dihydrogen phosphate ($LiH_2PO_4$) powder was purchased from Aldrich Chemical Co. From the scanning electron microscope (SEM) observation, these polycrystals have dimensions in the range of $25-250{\mu}m$. The electrical conductivity was measured at a measuring frequency of 1 kHz on heating polycrystalline lithium dihydrogen phosphate ($LiH_2PO_4$) from room temperature to 493 K. Two anomalies appeared at 451 K ($T_{p1}$) and 469 K ($T_{p2}$). The electrical conductivity reached the magnitude of the superprotonic phases: $3{\times}10^{-2}{\Omega}^{-1}cm^{-1}$ at 451 K ($T_{p1}$) and $1.2{\times}10{\Omega}^{-1}cm^{-1}$ at 469 K ($T_{p2}$). It is uncertain whether the superprotonic phase transformations are due to polymorphic transitions in the bulk, surface transitions, or chemical reactions (thermal decomposition) at the surface. Considering several previous thermal studies (differential scanning calorimetry and thermogravimetry), our experimental results seem to be related to the last case: chemical reactions (thermal decomposition) at the surface with the progressive solid-state polymerization.

Preparation of PNIPAM Hydrogel Containing Lipoic Acid (리포익산을 함유한 PNIPAM 하이드로젤의 제조)

  • Yoon, Hye-Ri;Lee, Jong-Hwi
    • Polymer(Korea)
    • /
    • v.36 no.4
    • /
    • pp.455-460
    • /
    • 2012
  • Poly(N-isopropylacrylamide) (PNIPAM) hydrogel has been studied as an important drug delivery system due to its volume transition or temperature-responsive swelling properties, whose phase separation temperature is similar to the body temperature. However, because of hydrophilic PNIPAM, hydrophobic drugs are difficult to be uniformly loaded in the networks. Antioxidant alpha-lipoic acid (LA) can be prepared as a polymer(polylipoic acid, PLA) by ring opening polymerization, which is hardly developed as a material due to its low molecular weight and easy depolymerization. To overcome this limitation, a hydrophobic active ingredient, LA was reacted with NIPAM into stable hydrogels. Simple thermal radical reaction successfully resulted in a hydrogel (PNIPAM/PLA), which was confirmed by DSC, FTIR, and Raman spectroscopy. The PNIPAM/PLA showed temperature-responsive properties, and their volume swelling decreased with an increase in lipoic acid content. These hydrogels can carry hydrophobic drugs with PNIPAM and the hydrogels could be useful as final drug delivery systems having lipoic acid as an antioxidant.

Synthesis of Polymerizable Amphiphiles with Basic Oligopeptides for Gene Delivery Application (염기성 올리고펩티드 유도체를 가진 고분자 리피드의 합성 및 유전자 전달 효과 연구)

  • Bae, Seon Joo;Choi, Hye;Choi, Joon Sig
    • Polymer(Korea)
    • /
    • v.37 no.1
    • /
    • pp.94-99
    • /
    • 2013
  • Polydiacetylene (PDA) is made by photopolymerization of self-assembled diacetylene monomers. If diacetylene monomers are arranged systematically and close enough with distance of atoms, 1,4-addition polymerization will occur by the irradiation of 254 nm ultraviolet rays and then PDA will have alternated ene-yne polymer chains at the main structure. Aqueous solutions of diffused PDA is tinged with blue which shows ${\lambda}_{max}$ 640 nm. Visible color changes from blue to red occurs in response to a variety of environmental perturbations, such as temperature, pH, and ligand-receptor interactions. In this study, we synthesized cationic peptides - PCDA(10,12-pentacosadyinoic acid) liposome using a solid phase peptide synthesis (SPPS) method and prepared liposome solutions at various molar ratios using MPEG-PCDA. When mammalian cells were treated with the liposomes, high transfection efficiency and low toxicity were observed.

Highly Efficient Production of Monodisperse Poly(ethylene glycol) (PEG) Hydrogel Microparticles by Utilizing Double Emulsion Drops with a Sacrificial Thin Oil Shell (얇은 오일쉘 이중에멀젼을 이용한 고효율 단분산성 하이드로젤 마이크로 입자 생산)

  • Kim, Byeong-Jin;Jeong, Hye-Seon;Choi, Chang-Hyung
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.139-144
    • /
    • 2022
  • This study reports a microfluidic approach to produce monodisperse hydrogel microparticles in a simple and highly efficient manner. Specifically, we produce double emulsion drops with a thin oil shell surrounding an aqueous prepolymer solution, which is solidified via UV-induced free radical polymerization. When they are dispersed in an aqueous solution, the oil shell is dewetted due to the absence of surfactants, resulting in production of highly uniform hydrogel microparticles (C.V.=1%). Results show that production of monodisperse hydrogel microparticles with controllable size and composition can be achieved with minimal use of oil unlike water-in-oil (w/o) single emulsion-based approach. Furthermore, in-depth study of flow patterns in microfluidic device using a phase diagram exhibits a crucial relationship among relative flow rates while providing windows of readily controllable parameters for reliable manufacturing of hydrogel microparticles.

Hydrophilic/Hydrophobic Dual Surface Coatings for Membrane Distillation Desalination (막증류 담수화를 위한 친수성/소수성 이중 표면 코팅)

  • Kim, Hye-Won;Lee, Seungheon;Jeong, Seongpil;Byun, Jeehye
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.3
    • /
    • pp.143-149
    • /
    • 2022
  • Membrane distillation (MD) has emerged as a sustainable desalination technology to solve the water and energy problems faced by the modern society. In particular, the surface wetting properties of the membrane have been recognized as a key parameter to determine the performance of the MD system. In this study, a novel surface modification technique was developed to induce a Janus-type hydrophilic/hydrophobic layer on the membrane surface. The hydrophilic layer was created on a porous PVDF membrane by vapor phase polymerization of the pyrrole monomer, forming a thin coating of polypyrrole on the membrane walls. A rigid polymeric coating layer was created without compromising the membrane porosity. The hydrophilic coating was then followed by the in-situ growth of siloxane nanoparticles, where the condensation of organosilane provided quick loading of hydrophobic layers on the membrane surface. The composite layers of dual coatings allowed systematic control of the surface wettability of porous membranes. By the virtue of the photothermal property of the hydrophilic polypyrrole layer, the desalination performance of the coated membrane was tested in a solar MD system. The wetting properties of the dual-layer were further evaluated in a direct-contact MD module, exploring the potential of the Janus membrane structure for effective and low-energy desalination.

ELUTION OF RESIDUAL MONOMER ACCORDING TO VARIOUS LIGHT SOURCES AND CURING TIME ON THE POLYMERIZATION OF PHOTOACTIVATED PIT AND FISSURE SEALANTS (광중합 광원의 종류와 조사시간에 따른 치면열구전색제의 미반응 모노머 용출)

  • Oh, You-Hyang;Park, Yoon-Kyung;Lee, Nan-Young;Lee, Chang-Seop;Lee, Sang-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.31 no.3
    • /
    • pp.421-430
    • /
    • 2004
  • The purpose of this study was to measure and compare the amount of unreacted TEGDMA from pit and fissure sealants cured with three different light sources; conventional halogen light curing unit, plasma arc light curing unit and argon laser. The specimens were eluted in distilled water for different time intervals. The time-related release of TEGDMA were analyzed by reverse-phase high performance liquid chromatography(HPLC). The result of present study can be summarized as follows: 1. The time-related release of TEGDMA decreased with increasing curing time in conventional halogen light, however, that not statistically significant difference(p>0.05). 2. The elution from the specimens cured for 6 and 9 seconds with plasma arc light was similar results corresponding with the time-related TEGBMA release, and was significantly lower than that cured for 3 seconds(p<0.05). 3. The elution of TEGDMA from the specimens cured with argon laser was significantly higher than that cured with halogen and plasma arc light(p<0.05). 4. The elution of TEGDMA from under recommended time of three different light sources were showed to be no statistically significant difference(p>0.05). 5. In time-related release of TEGDMA from recommended time of each light sources, the results correspond to 40 seconds of halogen light and 6 seconds of plasma arc light were similar(p>0.05). 6. The elution of TEGDMA, from over recommended time of three different light sources were showed to be no statistically significant difference(p>0.05). In this study, I suggest that curing time of plasma arc light is 6 and/or 9 seconds in the field of clinical pediatric dentistry claiming its effectiveness in optimal polymerization and reduced chair time.

  • PDF

Solvent Filtration Performance of Thin Film Composite Membranes based on Polyethersulfone Support (폴리이터설폰 지지체를 활용한 박막복합막의 용매투과특성 연구)

  • Kim, SeungHwan;Kim, YooShin;Kim, DoYong;Kim, SooMin;Kim, Jeong F.
    • Membrane Journal
    • /
    • v.29 no.6
    • /
    • pp.348-354
    • /
    • 2019
  • Recently, the application range of organic solvent nanofiltration (OSN) technology has been expanding, requiring membranes with better performance. In this work, thin film composite (TFC) OSN membrane was fabricated. First, ultrafiltration support membrane was prepared via nonsolvent-induced phase separation (NIPS) technique using polysulfone (PSf) and polyethersulfone (PES). Then, the effect of pore forming additives such as polyvinylpyrrolidone (PVP) and pluronic F-127 were employed to improve the membrane permeance. The well-known interfacial polymerization technique was employed using MPD-TMC chemistry to form a thin film on top of the fabricated support, and its solvent permeance and nanofiltration performance was characterized. It was found that polyethersulfone support exhibited more reliable performance compared to polysulfone, and PVP additive was more effective compared to Pluronic F-127. As for the oSN performance, polar aprotic solvents like acetonitrile show significantly higher flux (986.5 L·m-2·h-1·bar-1) compared to water and EtOH (9.5 L·m-2·h-1·bar-1).

The Structural Effects of Acidic Comonomers in pH/Thermal Sensitive Copolymer Based on N-Isopropylacrylamide on Their LCST Behavior (pH/온도 민감성 N-Isopropylacrylamide계 공중합체의 LCST거동에 대한 산성 공단량체의 구조적 영향)

  • 조항규;김병수;노시태
    • Polymer(Korea)
    • /
    • v.25 no.2
    • /
    • pp.186-198
    • /
    • 2001
  • pH/Thermal sensitive copolymers with the various acidic comonomer compositions composed of N-isopropylacrylamide (NIPAAm) with acrylic acid (AAc), 2-acrylamido glycolic acid (AAmGAc), and 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) were synthesized by free radial polymerization. In this study, to characterize the effect of different acidic comonomer composition and pH on the lower critical solution temperature (LCST) behaviors of their copolymers. phase transition experiments were performed with a thermo-optical analyzer (TOA). The phase transition temperature (T$^{p}$ ) of aqueous poly(NIPAAm-co-AAc) solution was lowered with increasing the ionization of the acid group in AAc, that is, the ionized state induced the electrostatic repulsion of ionized groups. In contrast, when AAmGAc was introduced into PNIPAAm, T$^{p}$ was little changed at pH 1-3, whereas climbed up significantly from pH 1 to pH 3. In the range of pH 6-10, Tp was lower than that of pH 3-5. This result was considered to be \"Ionic Screen Effect\" and this effect had been also observed in the case of poly(NIPAAm-co-AMPS).-co-AMPS).

  • PDF