• Title/Summary/Keyword: polymeric particles

Search Result 135, Processing Time 0.025 seconds

Novel green composite material manufactured by extrusion process from recycled polypropylene matrix reinforced with eucalyptus fibres and granite powder

  • Romulo Maziero;Washington M. Cavalcanti;Bruno D. Castro;Claudia V. Campo, Rubio;Luciano M.G. Vieira;Tulio H. Panzera;Juan C. Campos Rubio
    • Advances in materials Research
    • /
    • v.12 no.2
    • /
    • pp.119-131
    • /
    • 2023
  • The development of sustainable composites materials, from recycled polymeric materials and waste from the wood industry and stone processing, allows reducing the volume of these by-products, minimizing impacts on health and the environment. Nowadays, Polypropylene (PP) is the most recycled polymer in industry, while the furniture industry has increasingly used timber felled from sustainable forest plantations as a eucalypt. The powder tailing from the ornamental stone extraction and processing industry is commonly disposed of in the environment without previous treatment. Thus, the technological option for the development of composite materials presents itself as a sustainable alternative for processing and manufacturing industries, enabling the development of new materials with special technical features. The results showed that powder granite particles may be incorporated into the polypropylene matrix associated with short eucalyptus fibres forming green hybrid composites with potential application in structural engineering, such as transport and civil construction industries.

BaTiO3 Particles of Core-Shell Structure for Aqueous Paste to Avoid VOC Emission during MLCC Manufacturing Process (MLCC 제조공정에서 VOC배출 억제를 위한 수계 Paste용 BaTiO3 코팅분말의 합성)

  • Kim, Jin-Su;Choi, Guang J.
    • Clean Technology
    • /
    • v.8 no.4
    • /
    • pp.173-180
    • /
    • 2002
  • As a primary material for MLCC, $BaTiO_3$ particles coated with two additives in a core-shell structure were prepared in this study. This composite powder can not only reduce the VOC emission during MLCC manufacture but also increase the density and reliability of electronic products. The additives were $Y_2O_3$ and $MnCO_3$, whose composition information was obtained from domestic companies. It was observed that the surface of $BaTiO_3$ particles was uniformly as well as simultaneously coated by those two materials via urea-decomposition reaction over $70^{\circ}C$ as the reaction temperature. Elemental analysis indicated that the measured content of each additve was quite close to the designated value. The effect of polymeric dispersant such as PVP, on the coating characteristics was not as significant as expected.

  • PDF

3D Printing of Tungsten-Polymer Composites for Radiation Shielding (방사선 차폐를 위한 3D 프린팅용 텅스텐-고분자 복합체 설계)

  • Eom, Don-Geon;Kim, Shin-Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.5
    • /
    • pp.643-650
    • /
    • 2020
  • The materials with a high processiblity for radiation shielding, in particular for 3D printable materials, are highly demanding for producing robots working in nuclear plants and designing customized personal protection equipment. In this study, we suspend tungsten particles in a polymeric matrix of either PLA or ABS to compose tungsten-polymer composite filaments; PLA and ABS are widely used for conventional FDM-based 3D printing. The weight fraction of tungsten particles can be increased up to 50% without forming macroscopic aggregates. The composite filaments can be used to print 3D architectures with any shape and geometry. To demonstrate one of potential applications, we print parts for robot actuator and assemble them to protect PCB against gamma ray.

Preparation and Characterization of Silicone and Fluorine-Oil-Based Ferrofluids

  • Kim, Jong-Hee;Park, Keun-Bae;Kim, Ki-Soo
    • Composites Research
    • /
    • v.30 no.1
    • /
    • pp.41-45
    • /
    • 2017
  • Magnetite nanoparticles were synthesized by adding an ammonium hydroxide to a mixed solution of iron (II) and (III) chlorides. A silicon surfactant of ${\alpha},{\omega}$-(3-aminopropyl)polydimethylsiloxane was adsorbed on the particles as dispersant and a polydimethylsiloxane polymer was used to prepare ferrofluids of silicone oil base. Fluorinated surfactants of anionic ammoniated perfluoroalkyl sulfonamide and nonionic fluoroaliphatic polymeric esters were applied to the particles and a perfluoropolyether was used to prepare ferrofluids of fluorine oil base. The experimental conditions were used for preparing the ferrofluids with concentrations of 200, 300 and 400 mg/mL, and density, magnetization and viscosity of the products were characterized. The density values increased in proportion to the concentration, indicating 1.11-1.27 g/mL for silicone-oil-based fluids and 1.95-2.10 g/mL for fluorine-oil-based fluids in the range of 200-400 mg/mL. The saturation magnetization of the silicone-oil-based and fluorine-oil-based fluids indicated 14.7, 24.4, and 30.7 mT and 15.8, 23.3, and 33.7 mT for 200, 300, and 400 mg/mL, respectively, depending on the content of magnetic particles in the fluid. The viscosity of the silicone-oil-based ferrofluids was highly stable compared to that of the fluorine-oil-based with increasing temperatures. The ferrofluids are usually applied to seals and speakers with the silicone base and to seals with the fluorine base.

Flexible Energy Harvesting Device Based on Porous Piezoelectric Sponge (다공성 압전 스펀지를 이용한 플렉서블 에너지 하베스팅 소자 개발)

  • Dong Hun, Heo;Dong Yeol, Hyeon;Sung Cheol, Park;Kwi-Il, Park
    • Korean Journal of Materials Research
    • /
    • v.32 no.11
    • /
    • pp.508-514
    • /
    • 2022
  • Piezoelectric composite films which are enabled by inorganic piezoelectric nanomaterials-embedded polymer, have attracted enormous attention as a sustainable power source for low powered electronics, because of their ease of fabrication and flexible nature. However, the absorption of applied stress by the soft polymeric matrices is a major issue that must be solved to expand the fields of piezoelectric composite applications. Herein, a flexible and porous piezoelectric composite (piezoelectric sponge) comprised of BaTiO3 nanoparticles and polydimethylsiloxane was developed using template method to enhance the energy conversion efficiency by minimizing the stress that vanishes into the polymer matrix. In the porous structure, effective stress transfer can occur between the piezoelectric active materials in compression mode due to direct contact between the ceramic particles embedded in the pore-polymer interface. The piezoelectric sponge with 30 wt% of BaTiO3 particles generated an open-circuit voltage of ~12 V and a short-circuit current of ~150 nA. A finite element method-based simulation was conducted to theoretically back up that the piezoelectric output performance was effectively improved by introducing the sponge structure. Furthermore, to demonstrate the feasibility of pressure detecting applications using the BaTiO3 particles-embedded piezoelectric sponge, the composite was arranged in a 3 × 3 array and integrated into a single pressure sensor. The fabricated sensor array successfully detected the shape of the applied pressure. This work can provide a cost-effective, biocompatible, and structural strategy for realizing piezoelectric composite-based energy harvesters and self-powered sensors with improved energy conversion efficiency.

Characteristics of Al2O3/ZrO2 Ceramics by the Dispersion Process of ZrO2 Particles (ZrO2 입자의 분산방법에 따른 Al2O3/ZrO2 요업체의 특성)

  • Youn, Sang-Hum;Kim, Jae-Jun;Hwang, Kyu-Hong;Lee, Jong-Kook;Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.8 s.279
    • /
    • pp.561-566
    • /
    • 2005
  • For the homogeneous dispersion of $ZrO_2$ particles in $Al_2O_3/ZrO_2$ceramics, Zr-precusors were mixed with oxide $Al_2O_3$powders by chemical routes such as partial precipitation or partial polymerization of Zr-nitrate solutions. In case of the mechanical mixing of ultrafine $Al_2O_3$ and $ZrO_2$ oxide powders, relatively homogeneous dispersion was difficult to achieve so that the particle size and distributions of $ZrO_2$ were relatively inhomogeneous after sintering at high temperature. But when the Zr-Y-hydroxide were co-precipitated to ultrafine $Al_2O_3$ oxide powders followed by calcinations, homogeneous dispersion of nano-sized $ZrO_2$ particles in $Al_2O_3/ZrO_2$ composite ceramics were obtained. But because of the coalescence of dispersed $ZrO_2$ particles, dispersed $ZrO_2$ was grown up to more than 0.2${mu}m$ (200 nm) when sintered at the temperature of higher than $1500^{\circ}C$ But when the sintering temperature was kept to lower than $1400^{\circ}C$ by using nano-sized $\alpha-alumina$, the particle size of dispersed $ZrO_2$ could be sustained below 0.1 ${\mu}m$. But the coalescence of dispersed $ZrO_2$ between $Al_2O_3$ particles could not be avoided so that the mechanical properties were not enhanced contrary to the expectations. So Zr-polyester precursors were precipitated and coated to the surface of ultrafine $\alpha-alumina$ powders by the polymerization of Ethylene Glycol with Citric Acid and Zirconium Nitrate. By this dispersion much more uniform dispersion of $ZrO_2$ was achieved at $1450\~1600^{\circ}C$ of sintering temperature ranges. And due to especially discrete dispersion of $ZrO_2$ between $Al_2O_3$ particles, their mechanical strength was more enhanced than mechanical mixing or hydroxide precipitation methods.

Synthesis of Nanoparticles via Surface Modification for Electronic Applications

  • Lee, Burtrand I.;Lu, Song-Wei
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 2000.06a
    • /
    • pp.35-58
    • /
    • 2000
  • The demand for sub-micrometer or nanometer functional ceramic powders with a better suspension behavior in aqueous media in increasing. Redispersible barium titanate (BT) nanocrystals, green light emitting Mn2+ doped Zn$_2$SiO$_4$ and ZnS nanoparticle phosphors were synthesized by a hydrothermal method or chemical precipitation with surface modification. The nanoparticle redispersibility for BT was achieved by using a polymeric surfactant. X-ray diffraction(XRD) results indicated that the BT particles are of cubic phase with 80 nm in size. XRD results of zinc silicate phosphor indicate that seeds play an important role in enhancing the nucleation and crystallization of Zn$_2$SiO$_4$ crystals in a hydrothermal condition. This paper describes and discuss the methods of surface modification, and the resulting related properties for BT, zinc silicate and zinc sulfide.

  • PDF

Pulverizer Development for multiple cracking of polymer materials (고분자재료의 다중파쇄 분쇄기 개발)

  • Jung H.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1668-1671
    • /
    • 2005
  • Vulcanized natural rubber was pulverized using a single screw extruder in a non-cryogenic Solid Shear Extrusion process where rubber granulates were subjected to high compressive and shear stresses. The producted particles had diameters ranging from 40 to 1200$\{mu}m$. A principle used in this paper was developed in Russia. The development method for producing a polymeric material powder consists in compressing said material by shearing the material during a pressure increase and cooling. Consecutive breakdown is carried out by shearing the material during the pressure decrease and cooling.

  • PDF

Element-free simulation of dilute polymeric flows using Brownian Configuration Fields

  • Tran-Canh, D.;Tran-Cong, T.
    • Korea-Australia Rheology Journal
    • /
    • v.16 no.1
    • /
    • pp.1-15
    • /
    • 2004
  • The computation of viscoelastic flow using neural networks and stochastic simulation (CVFNNSS) is developed from the point of view of Eulerian CONNFFESSIT (calculation of non-Newtonian flows: finite elements and stochastic simulation techniques). The present method is based on the combination of radial basis function networks (RBFNs) and Brownian configuration fields (BCFs) where the stress is computed from an ensemble of continuous configuration fields instead of convecting discrete particles, and the velocity field is determined by solving the conservation equations for mass and momentum with a finite point method based on RBFNs. The method does not require any kind of element-type discretisation of the analysis domain. The method is verified and its capability is demonstrated with the start-up planar Couette flow, the Poiseuille flow and the lid driven cavity flow of Hookean and FENE model materials.

Enhancement of the Escherichia coli Floc Strength with Water Soluble Polymers

  • KIM, CHAN-WHA;CHOKYUN RHA
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.4
    • /
    • pp.282-286
    • /
    • 1997
  • The floc strength of Escherichia coli was enhanced by adding water soluble polymer flocculants (BPA-5020 and BPA-5000) to the particulate flocculant (BPA-1000) as indicated by the increase in the shear index. The shear index of the E. coli flocs increased from 0.39 with the particulate flocculant alone to 0.94 with the particulate flocculant in conjunction with the water soluble polymer flocculant. In addition, the sedimentation rate of flocs was higher and the sedimented volume of flocs was smaller when the particulate flocculant was used with the water soluble polymer flocculant. When E. coli was flocculated first with the water soluble flocculant and the particulate flocculant was added later into the E. coli flocs formed, the sedimentation rate of the flocs was greater than that of any other combination. The shear index of the flocs was, however, independent of the sequence of the flocculant addition.

  • PDF