• Title/Summary/Keyword: polymeric membrane

Search Result 315, Processing Time 0.025 seconds

$H_{2}S$ Removal and $CO_{2}/CH_{4}$ Separation of Ternary Mixtures Using Polyimide Hollow Fiber Membrane (폴리이미드 중공사막을 이용한 혼합기체로부터 $H_{2}S$ 제거 및 $CO_{2}/CH_{4}$ 분리에 관한 연구)

  • Park, Bo-Ryoung;Kim, Dae-Hoon;Jo, Hang-Dae;Seo, Yong-Seog;Hwang, Taek-Sung;Lee, Hyung-Keun
    • Korean Chemical Engineering Research
    • /
    • v.49 no.2
    • /
    • pp.250-255
    • /
    • 2011
  • In this study, by using the polymeric membrane separation process, the $CO_{2}/CH_{4}$ separation and $H_{2}S$ removal from biogas were performed in order to $CH_{4}$ purification and enrichment for the fuel cell energy source application. Fibers were spun by dry/wet phase inversion method. The module was manufactured by fabricating fibers after surface coating with silicone elastomer. The scanning electron microscopy(SEM) studies showed that the produced fibers typically had an asymmetric structure; a dense top layer supported by a porous, sponge substructure. The permeance of $CO_{2}$ and $CO_{2}/CH_{4}$ selectivity increased with pressure and temperature. Mixture gas with increasing pressure and temperature, removal efficiency of the $CO_{2}$ and $H_{2}S$ were decreased while concentration of $CH_{4}$ was increased up to 100%. When retentate flow rate was increased with the decreasing of pressure and temperature the $CH_{4}$ recovery ratio in retentate side was increased while the $CH_{4}$ purity in retentate side was decreased.

Research Trends of Polybenzimidazole-based Membranes for Hydrogen Purification Applications (수소 분리 응용을 위한 폴리벤즈이미다졸 기반 분리막의 연구 동향)

  • Kim, Ji Hyeon;Kim, Kihyun;Nam, Sang Yong
    • Applied Chemistry for Engineering
    • /
    • v.31 no.5
    • /
    • pp.453-466
    • /
    • 2020
  • As the demand for eco-friendly energy increases to overcome the energy shortage and environmental pollution crisis, hydrogen economy has been proposed as a potential solution. Accordingly, an economical and efficient hydrogen production is considered to be an essential industrial process. Research on applying hydrogen separation membranes for H2/CO2 separation to the production of highly concentrated hydrogen by purifying H2 and capturing CO2 simultaneously from synthetic gas produced by gasification is in progress nowadays. In high temperature environments, the membrane separation process using glassy polymeric membrane with H2 selectivity has the potential for CO2 capture performance, and is an energy and cost effective system since polybenzimicazole (PBI)-based separators show excellent chemical and mechanical stability under high-temperature operation conditions. Thus, the development of high-performance PBI hydrogen separators has been rapidly progressing in recent years. This overview focuses on the recent developments of PBI-based membranes including structure modified, cross-linked, blended and carbonized membranes for applications to the industrial hydrogen separation process.

High Permeability, High Selectivity Carbon-Silica Membranes for Gas Separation (기체분리용 고투과선택성 탄소-실리카막)

  • 이영무;박호범
    • Membrane Journal
    • /
    • v.12 no.2
    • /
    • pp.107-119
    • /
    • 2002
  • Carbon-silica ($C-SiO_2$) membranes can be easily prepared by the pyrolysis of two-phase copolymers containing an aromatic imide block and a siloxane block and remarkably high permselectivities of $He/N_2, O_2/N_2,$ and $CO_2/N_2$. The pyrolysis of the imide-siloxane block copolymers was carried out at different final temperatures, $600^{\circ}C, 800^{\circ}C,$ and $1000^{\circ}C$ under an inert atmosphere, and is the first reported case of the precursors being used for the preparation of carbon membrane. The polymeric precursors were synthesized in a wide range of siloxane content and different final morphology, and the pyrolozed membranes were tested with a high vacuum time-lag method at $25^{\circ}C$ and 76cmHg of feed pressure. In experiments with He, $CO_2, O_2 \;and \;N_2$, the membranes were found to have good $O_2/N_2$ selectivity up to 32.2 and $O_2$ permeability on the order of $10-8/cm^2(STP)cm/cm^2seccmHg.$.

Permeation Properties of Single Gases ($N_2$, $O_2$, $SF_6$, $CF_4$) through PDMS and PEBAX Membranes (PDMS와 PEBAX 분리막을 통한 단일기체($N_2$, $O_2$, $SF_6$, $CF_4$) 투과 특성)

  • Kim, Hanbyul;Lee, Minwoo;Park, Wankeun;Lee, Soonjae;Lee, Hyunkyung;Lee, Sanghyup
    • Membrane Journal
    • /
    • v.22 no.3
    • /
    • pp.201-207
    • /
    • 2012
  • In this study, we investigated permeation of single gas ($N_2$, $O_2$, $CF_4$, and $SF_6$) through flat sheet membrane composed of PDMS (poly-dimethylsiloxane) and PEBAX (polyether block amides). Gas permeation experiment was performed with various feed pressure. Permeability was estimated using permeation flux measured by continuous-flow technique. The permeability of gases except $SF_6$ in PDMS were decreased with the upstream pressure increased. $SF_6$ is much more permeable than $CF_4$, which is due to higher critical temperature of $SF_6$. The permeability decreased in the following order: $O_2$ > $N_2$ > $SF_6$ > $CF_4$. On the other hand, the permeability of gases in PEBAX followed the order: $O_2$ > $N_2$ > $CF_4$ > $SF_6$ which are opposite of the order of kinematic diameter (${\AA}$)($SF_6$ > $CF_4$ > $N_2$ > $O_2$). The $SF_6/CF_4$ pure gas selectivity in PDMS was 2.1 at 0.7 MPa.

Flotation of cyanobacterial particles without chemical coagulant under auto-flocculation

  • Kwak, Dong-Heui;Kim, Tae-Geum;Kim, Mi-Sug
    • Membrane and Water Treatment
    • /
    • v.9 no.6
    • /
    • pp.447-454
    • /
    • 2018
  • Although flotation techniques are often used for the removal of algal particles, the practicality of algae-harvesting technologies is limited owing to the complex and expensive facilities and equipment required for chemical coagulation. Here, we examined the feasibility of an approach to separating algal particles from water bodies without the need for chemical coagulants, depending on the condition of the algae, and to determine the optimal conditions. Using Anabaena sp., a cyanobacterium causes algal blooms in lakes, we stimulated auto-flocculation in algal particles without coagulants and conducted solid-liquid separation experiments of algal particles under various conditions. The six cultivation columns included in our analysis comprised four factors: Water temperature, light intensity, nutrients, and carbon source; auto-flocculation was induced under all treatments, with the exception of the treatment involving no limits to all factors, and algal particles were well-settled under all conditions for which auto-flocculation occurred. Meanwhile, flotation removal of auto-flocculated algal particles was attained only when nutrients were blocked after algae were grown in an optimal medium. However, no significant differences were detected between the functional groups of the extracellular polymeric substances (EPSs) of floated and settled algal particles in the FT-IR peak, which can cause attachment by collision with micro-bubbles.

The Air/water Interface Characteristics of Maleate Copolymer LB Films (말레에이트계 공중합체 I-l3막의 공기/물에서의 계면 특성)

  • 신훈규;권영수;이범종;장정수;배진호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.05a
    • /
    • pp.220-223
    • /
    • 1995
  • Stable polyion-complexed polymeric monolayrers were prepared by spreading perfluoroalkyl monomaleatd copolymers. C$_2$F$\_$8/MA-VE$_2$ and C$_2$F$\_$8/Mv-VE$_3$ on aqueous poly(allylamine) subphase. The monolayer properties have been studied by the surface pressure-area($\pi$-A) isotherms. The C$_2$F$\_$8/MA-VE$_3$containing longer oligoethyleneglycol pendant showed more expaned monolayer phase than the C$_2$F$\_$8/MA-VE$_2$ The polyion-complexed monolayers were transferable on various substrates, and the resulting Langmuir-Blodgett(LB) films were characterized b ET-IR spectroscopy and scanning electron microscopy(SEM) Two-dimensional crosslinking to from a polymer network was achieved by amide formation through heat treatment under vacuum with concurrent removel of perfluoroalkyl tails. SEM observation of this film ona porous membrane filter showed that the four layer film was sufficiently stable to cover the filter pore size of 0.1$\mu\textrm{m}$. The C$_2$F$\_$8/MA-VE$_3$revealed better covering capability than the C$_2$F$\_$8/MA-VE$_2$Immersion of this film in water or in benzend did not cause any change in its appearance and in FT-IR spectra.

  • PDF

Surface-Modified Porous Polymeric Membrane Using Vesicles

  • Im, Ji-Youn;Lee, Sang-Hee;Ko, Suck-Beom;Lee, Kuk-Haeng;Lee, Youn-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.11
    • /
    • pp.1616-1622
    • /
    • 2002
  • If the surfaces of vesicles are chemically modified so that they can be dispersed in organic solvents, the application of vesicular colloids may be expanded. A polymerizable surfactant (BDAC) and nonpolymerizable bipolar surfactant (BPAS) were synthesized in multi-steps. Large vesicles composed of BDAC and BPAS with embedded a cross-linking agent (divinylbenzene) underwent a radical polymerization. BPAS was extracted out using methanol (skeletonization). The headgroup of BDAC was cleaved off via hydrolysis in an acidic condition to yield vesicles where surfaces were covered with -COOH groups. There was no significant change in the overall shape. The skeletonized vesicles appear to have many holes with diameters up to about 25 nm. The holes retained even after hydrolysis. The hydrolyzed vesicles were not dispersed in water and most organic solvents such as tetrahydrofuran and chloroform, but dispersed in methanol.

Study on Removal of DOC for Effluent from Nitrification and Denitrification Process with Zeolite by Combined Process of Coagulation and UF Membrane (제올라이트를 첨가한 질산화 탈질공정에서 응집과 UF공정을 이용한 처리수내 용존 유기물질 제거 연구)

  • Han, Jang Hyuk;Yoon, Tai Il;Cho, Kyung Chul;Song, Jea Yong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.5
    • /
    • pp.537-546
    • /
    • 2005
  • This study was carried out to evaluate EPS and SMP variation of sludge and effluent in nitrification and denitrification process with zeolite addition, a possible reduction of effluent DOC by URC(Ultra Rapid Coagulation) process. As a biological wastewater treatment result, EPS formation of both aeration and anoxic sludges are not affect by SRT variation. However, EPS concentration of sludges is higher in aeration tank than in anoxic tank by 6~8 mg EPS/ g VSS. Linear relationship between SMP to DOC indicates that SMP of bulk solution contributes to most of the biological treatment effluent DOC. DOC and turbidity removal efficiency was more improved with URC process than in a conventional coagulation. For pretreatment of UF filtration DOC removal was advanced by URC process than only UF filtration.

Release Characteristics to Vitamin $B_{2}$ of Chitosan Ointments In vitro (In vitro에서 키토산 연고의 비타민 $B_{2}$ 방출 특성)

  • Oh, Se-Young;Hwang, Sung-Kwy;Hwang, Yong-Hyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.43-48
    • /
    • 2000
  • Drug delivery system(DDS) applied to various fields, such as medicine, cosmetics, agriculture and necessities of life. Among these application fields, DDS is often used as the method of drug dosage into the epidermic skin. We investigated characters of transdermal therapeutic system(TTS) and the skin permeability of that with applying DDS. Chitosan was selected as material of TTS. We investigated the permeation of chitosan ointment containing drug in rat skin using horizontal membrane cell model. Permeation properties of materials were investigated for water-soluble drug such as riboflavin in vitro. We used glycerin, PEG 600 and oleic acid as enhancers. Since dermis has more content water(hydration) than the stratum corneum, skin permeation rate at steady state was highly influenced when glycerin was used in water-soluble drug. The permeation rate of content enhancer and drug was found to be faster than that of content water-soluble drug only. These results showed that skin permeation rate of drug across the composite was manly dependent on the property of ointment base and drug. Proper selection of the polymeric materials which resemble and enhance properties of the delivering drug was found to be important in controlling the skin permeation rate.

Gas Separation of Pyrolyzed Polymeric Membranes: Effect of Polymer Precursor and Pyrolysis Conditions

  • Jung, Chul-Ho;Kim, Gun-Wook;Han, Sang-Hoon;Lee, Young-Moo
    • Macromolecular Research
    • /
    • v.15 no.6
    • /
    • pp.565-574
    • /
    • 2007
  • In this study, five representative, commercially available polymers, Ultem 1000 polyetherimide, Kapton polyimide, phenolic resin, polyacrylonitrile and cellulose acetate, were used to prepare pyrolyzed polymer membranes coated on a porous {\alpha}-alumina$ tube via inert pyrolysis for gas separation. Pyrolysis conditions (i.e., final temperature and thermal dwell time) of each polymer were determined using a thermogravimetric method coupled with real-time mass spectroscopy. The surface area and pore size distribution of the pyrolyzed materials derived from the polymers were estimated from the nitrogen adsorption/desorption isotherms. Pyrolyzed membranes from polymer precursors exhibited type I sorption behavior except cellulose acetate (type IV). The gas permeation of the carbon/{\alpha}-alumina$ tubular membranes was characterized using four gases: helium, carbon dioxide, oxygen and nitrogen. The polyetherimide, polyimide, and phenolic resin pyrolyzed polymer membranes showed typical molecular sieving gas permeation behavior, while membranes from polyacrylonitrile and cellulose acetate exhibited intermediate behavior between Knudsen diffusion and molecular sieving. Pyrolyzed membranes with molecular sieving behavior (e.g., polyetherimide, polyimide, and phenolic resin) had a $CO_2/N_2$ selectivity of greater than 15; however, the membranes from polyacrylonitrile and cellulose acetate with intermediate gas transport behavior had a selectivity slightly greater than unity due to their large pore size.