• Title/Summary/Keyword: polymeric emulsifier

Search Result 7, Processing Time 0.022 seconds

Adhesive Properties of Acrylic Emulsion Pressure Sensitive Adhesives with Polymeric Emulsifier (고분자 유화제를 이용한 수성 아크릴 에멀션 점착제의 접착 물성)

  • 박명철;이명천
    • Polymer(Korea)
    • /
    • v.27 no.6
    • /
    • pp.596-602
    • /
    • 2003
  • A Polymeric emulsifier was synthesized by solution polymerization with 2-ethylhexyl acrylate, n-butyl acrylate, and acrylic acid. A series of polymeric emulsifier have been used in the emulsion copolymerization of 2-ethylhexyl actryacrylate and n-butyl acrylate. The size of the synthesized latex particles was around 145 nm and its distribution was very narrow. Emulsion with polymeric emusifier showed no coagulum after 7 cycles of freeze-thaw test, while the emulsion with traditional emulsifier exhibited coagulum after 2 cycles. The adhesion tests showed that the initial tackiness and peel strength decreased as the molecular weight and acrylic acid content of polymeric emulsifier increased, whereas the holding power increased.

RETINOL STABILIZATION BY PSEUDO-LIPOSOME AND LAMELLAR LIQUID CRYSTAL

  • Lee, Seung-Ji;Jo, Byoung-Kee;Lee, Young-Jin;Ryu, Chang-Suk;Kim, Beom-Jun;Suk, Chang-Hyun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.24 no.3
    • /
    • pp.116-122
    • /
    • 1998
  • It is well known that all-trans-retinol is not only very unstable in heat, light, air, and water, but also skin-irritant despite a good anti-wrinkle effect. Therefore, it is very difficult to stabilize retinol and make the safe retinol containing cosmetics by using a certain concentration of retinol with real effect. In order to dissolve these problems and apply retinol for skin care cream, firstly retinol is to be encapsulated in the vesicle called Liposphere (pseudo-liposome) which is made by homogenizing under high pressure the mixtures of lecithin, retinol, caprylic/capric triglyceride, and hydroalcoholic solution ; and then this retinol containing Liposphere is to be intercalated in lamellar liquid crystal layer which is prepared by emulsifying in an optimal ratio the mixtures composed of non-ionic emulsifier (cetearyl glucoside, sorbitan stearate & sucrose cocoate etc), cetearyl alcohol, stearic acid, cholesterol, and ceramide. In addition, the stability of the retinol containing oil in water cream by adding the polymeric emulsifier such as acrylate /C10-30 alkyl alkylate crosspolymer is to be ensured even at 55 C. Retinol containing oil in water cream prepared through above procedure could be very stable at 45 C for at least 50 days. The structure identification of lamellar liquid crystal was determined using polarized light microscope and electron microscope Conclusively, we could make the very stable retinol containing oil in water cream by triple procedure, that is, encapsulation of retinol in Liposphere, intercalation of retinol in lamellar liquid crystal layer, and assurance of the high temperature stability of cream even at 55 C.

  • PDF

Development and Prospect of Emulsion Technology in Cosmetics (화장품에서 유화기술의 발전 및 전망)

  • Kyong, Kee-Yeol;Lee, Cheon-Koo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.32 no.4 s.59
    • /
    • pp.209-217
    • /
    • 2006
  • Emulsion is a dispersion system among liquids which are not miscible together. There are numerous cosmetic raw materials which have different physicochemical properties. Therefore, emulsion technology is very useful in cosmetics. With the development of emulsifier, several emulsification technologies have been developed. Since HLB method by Griffin in 1950's, PIT method, gel method, and D-phase methods, etc, have been developed. Recently, the application of natural emulsifier and polymeric emulsifier increases in cosmetics in order to achieve enhanced safety and biocompatibility. Besides nano-emulsion, multiple-emulsion, liquid crystal emulsion, and Pickering emulsion have been developed and applied as means of differentiating appearance and texture of products and achieving enhanced delivery of active ingredients. Meanwhile, the application studies of nano-dispersed structural system such as liposome or cubosome are on progress. Liposome is a bi- or multi-lamella layer dispersion system composed of amhiphilic molecules - phospholipids which are main components of plasma membrane. Cubosome also is a nano-sized dispersion system composed of a specific molecule like glyceryl monoloeate derived from natural products. And it has a cubic bicontinuous structure in water due to its unique molecular structure. Incorporating compounds (active materials) into such nano-particles can increase biocompatibility and delivery efficiency of target compounds. Manufacturing process and application of cosmetic emulsions and nano-particles are briefly introduced in this paper.

Fabrication of Ordered or Disordered Macroporous Structures with Various Ceramic Materials from Metal Oxide Nanoparticles or Precursors

  • Cho, Young-Sang;Moon, Jun-Hyuk;Kim, Young-Kuk;Choi, Chul-Jin
    • Journal of Powder Materials
    • /
    • v.18 no.4
    • /
    • pp.347-358
    • /
    • 2011
  • Two different schemes were adopted to fabricate ordered macroporous structures with face centered cubic lattice of air spheres. Monodisperse polymeric latex suspension, which was synthesized by emulsifier-free emulsion polymerization, was mixed with metal oxide ceramic nanoparticles, followed by evaporation-induced self-assembly of the mixed hetero-colloidal particles. After calcination, inverse opal was generated during burning out the organic nanospheres. Inverse opals made of silica or iron oxide were fabricated according to this procedure. Other approach, which utilizes ceramic precursors instead of nanoparticles was adopted successfully to prepare ordered macroporous structure of titania with skeleton structures as well as lithium niobate inverted structures. Similarly, two different schemes were utilized to obtain disordered macroporous structures with random arrays of macropores. Disordered macroporous structure made of indium tin oxide (ITO) was obtained by fabricating colloidal glass of polystyrene microspheres with low monodispersity and subsequent infiltration of the ITO nanoparticles followed by heat treatment at high temperature for burning out the organic microspheres. Similar random structure of titania was also fabricated by mixing polystyrene building block particles with titania nanoparticles having large particle size followed by the calcinations of the samples.

Stabilization and Release Behavior of W1/O/W2-Type Multiple Emulsions Using Various Block Copolymer Emulsifier and Stabilizer (다양한 Block Copolymer를 유화제 및 안정화제로 사용한 W1/O/W2-Type 다중에멀젼의 방출거동 및 안정성)

  • Haw, Jung-Rim;Kim, Cheol-Hun
    • Applied Chemistry for Engineering
    • /
    • v.8 no.4
    • /
    • pp.560-567
    • /
    • 1997
  • A new approach to obtain stable $W_1/O/W_2$ multiple emulsions has been studied ; The basis of the interfacial interaction between a PCL-PEO-PCL triblock copolymer and a lipophilic emulsifier in the dispersed oil phase was examined. $W_1/O/W_2$ multiple emulsions were prepared by the two-step method. Arlacel P-l35 was used as a liphophilic emulsifier and Synperonic PE/F 127 as a hydrophilic one. Eutanol-G was used as an oil phase. NaCl was encapsulated within the multiple emulsion droplets as the internal marker and its release rate studies were carried out. The suability of the multiple emulsions have been assessed by measuring Separation Ratios(%) and microscopic observations. The release of NaCl was significantly reduced in $W_1/O/W_2$ multiple emulsions containing PCL-PEO-PCL triblock copolymer(2k-4k-2k or 6k-4k-6k) in the oil phase. It may be concluded that the copolymer and the emulsifier form effective interfacial complex to enhance stability and to control the release rate. The effective diffusion coefficients of the NaCl were estimated as $2.64{\times}10^{-15}s$and $3.23{\times}10^{-16}gcm^2/s$ for the $W_1/O/W_2$ multiple emulsion containing 1.2 wt % of PCL-PEO-PCL triblock copolymers with compositions of 2k-4k-2k and 6k-4k-2k, respectively. The rate of release decreased with the increase of the initial concentration of NaCl. The results were examined in view of Higuchi mechanism. A kinetic model which is similar to the model for release of dispersed drugs from a polymeric matrix was found to be suitable for the release of NaCl from $W_1/O/W_2$ multiple emulsions.

  • PDF

Preparation of Monodisperse Submicron-Sized Polymeric Particles by Emulsifier-Free Emulsion Polymerization (무유화중합에 의한 단분산 Submicron 크기의 고분자 미립자의 제조)

  • Lee, Ki-Chang
    • Journal of Adhesion and Interface
    • /
    • v.13 no.3
    • /
    • pp.101-108
    • /
    • 2012
  • Narrowly dispersed poly(BMA-co-MMA) and PBMA latices (PSD : 1.002~1.008) were synthesized successfully by surfactant-free emulsion polymerization with 2,2' azobis(2-methyl-propionamidine) dihydrochloride (AIBA) and $K_2S_2O_8$ (KPS). The number average particle diameter and the number average molecule weight were found to be 160~494 nm and (1.25~7.55) ${\times}10^4$, respectively. The influences of BMA/MMA ratio, monomer and initiator concentrations, addition of DVB/EGDMA crosslink agent, and polymerization temperature on the polymerization rates and on the particle size and molecular weight were studied. The rate of polymerization increased with increasing MMA concentration in BMA/MMA weight ratio. The particle diameter as well as the polymer molecular weight could be controlled easily by controlling the BMA/MMA weight ratio, monomer concentration, AIBA and KPS concentration, and polymerization temperature.

Studies on the Polymeric Surface Active Agent(VI) -The Surface Activities of Anionic Oligomer Surfactant with α-Sulfo Alkanoic Acid- (고분자 계면활성제에 관한 연구(제6보) -알파 술폰 지방산 음이온성 올리고머 계면활성제의 계면성-)

  • Jeong, No-Hee;Park, Sang-Seok;Jeong, Hoan-Kyung;Cho, Kyung-Haeng;Nam, Ki-Dae
    • Applied Chemistry for Engineering
    • /
    • v.4 no.4
    • /
    • pp.683-691
    • /
    • 1993
  • All the activities and physical properties including surface tension, foaming power, foam stability, emulsifying power, dispersion effect, wettability and solubilization of sodium dodecyl polyoxyethylene ${\alpha}$-sulfo alkanoates aqueous solution were measured and critical micelle concentration was evaluated. Their cmc ebaluated by the surface tension method was $10^{-4}{\sim}10^{-5}mol/{\ell}$, and surface tension of the aqueous solution was decreased to 30~70dyne/cm. The experimental results for foaming power, foam stability, emulsifying power in benzene or soybean oil, dispersion effect in calcium carbonate, wettability and solubilization showed a good and efficient surface active properties, and then it would be expected that these products could be applied as O/W type emulsifier, dispersion agent.

  • PDF