• Title/Summary/Keyword: polymeric carrier.

Search Result 61, Processing Time 0.029 seconds

A Hot Melt w/o/w Emulsion Technique Suitable for Improved Loading of Hydrophilic Drugs into Solid Lipid Nanoparticles (현탁된 고형지질나노입자 내로 친수성 약물의 봉입률을 증대시키기 위한 w/o/w 에멀션 가온용융유화법의 평가)

  • Lee, Byoung-Moo;Choi, Sung-Up;Lee, Jae-Hwi;Choi, Young-Wook
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.1
    • /
    • pp.33-38
    • /
    • 2005
  • Recently increasing attention has been focused on solid lipid nanoparticles (SLN) as a parenteral drug carrier due to its numerous advantages that can come from both polymeric particle and fat emulsions, together with the possibility of controlled release and increasing drug stability. Lipophilic drugs such as paclitaxel, cyclosporin A, and all-trans retinoic acid have been successfully entrapped in SLN but the incorporation of hydrophilic drugs in SLN is very limited because of their very low affinity to the lipid. Therefore, as a new approach to improve the loading of hydrophilic drugs, a w/o/w emulsion technique has been developed. The primary objective of the current study was to improve the loading efficiency of a model hydrophilic drug, glycine (Log P = -3.44) into SLN. The proposed preparation process is as follows: A heated aqueous phase consisting of 0.1 ml of glycine solution in water (100 mg/ml), and poloxamer 188 (5 mg) were then added to a molten oil phase containing precirol (100 mg) and lecithin (5 mg). This mixture was dispersed by sonicator, leading to a w/o emulsion. A double emulsion (w/o/w) was formed after the addition of 2% poloxamer solution to the above dispersed system. After cooling the double emulsion, solid lipid nanosuspensions were successfully formed. The lipid nanoparticles had the mean particle size of 441.25 nm, and the average zeta potential of -20.98 mV. The drug loading efficiency was measured to be 8.54% and the drug loading amount was measured to be 0.92%. The w/o/w emulsion method showed an increased loading efficiency compared to conventional o/w emulsion method.

Application and therapeutic effects of sickle red blood cells for targeted cancer therapy (표적항암치료를 위한 겸형적혈구의 응용 및 치료 효과)

  • Choe, Se-woon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.12
    • /
    • pp.2395-2400
    • /
    • 2016
  • Conventional drug carriers such as liposomes, nanoparticles, polymer micelles, polymeric conjugate and lipid microemulsion for cancer chemotherapy shield normal tissues from toxic drugs to treat cancer cells in tumors. However, inaccurate tumor targeting uncontrolled drug release from the carriers and unwanted accumulation in healthy sites can limit treatment efficacy with current conventional drug carriers with insufficient concentrations of drugs in the tumors and unexpected side effects as a result. Sickle red blood cells show natural tumor preferential accumulation without any manipulation due to the adhesive interaction between molecular receptors on the membrane surface and counter-receptor on endothelial cells. In addition, structural changes of microvascular in tumor sites enhances polymerization of sickle red blood cells. In this research, we examined the use of sickle red blood cells as a new drug carrier with novel tumor targeting and controlled release properties to quantify its therapeutic effects.

Sequential Conjugation of 6-Aminohexanoic Acids and L-Arginines to Poly(amidoamine) Dendrimer to Modify Hydrophobicity and Flexibility of the Polymeric Gene Carrier

  • Yu, Gwang-Sig;Yu, Ha-Na;Choe, Yun-Hui;Son, Sang-Jae;Ha, Tai-Hwan;Choi, Joon-Sig
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.651-655
    • /
    • 2011
  • We synthesized a novel cationic dendrimer consisting of a poly(amidoamine) dendrimer (PAMAM, generation 4) backbone with both L-arginine (Arg) at the termini and 6-aminohexanoic acid (Ahx) between the original core polymer and the peripheral Arg units. The sequential chemical modification of PAMAM G4 with Ahx and Arg resulted in higher transfection efficiency with much less cytotoxicity. PAMAM G4-Ahx-Arg formed stable polyplexes at weight ratios of 8:1 or higher (polymer: plasmid DNA), and the mean polyplex diameter was $180{\pm}20nm$. PAMAM G4-Ahx-Arg showed much higher transfection ability than PAMAM G4 or PAMAM G4-Ahx. Furthermore, PAMAM G4-Ahx-Arg was much less cytotoxic than PEI25KD and PAMAM G4-Arg. In addition to Arg grafting of the PAMAM dendrimer, which endows a higher transfection capability, the addition of Ahx spacer increased dendrimer hydrophobicity, introduced flexibility into the conjugated amino acids, and reduced cytotoxicity. Overall, it appears that the concomitant modification of PAMAM with Ahx and Arg could lead to new PAMAM conjugates with better performances.

Characteristics of Nickel Aluminate Ceramics Synthesized by Organic (PVA)-Inorganic Solution Technique (PVA 폴리머를 이용한 니켈 알루미네이트 분말의 합성 및 특성연구)

  • 이상진;김주원
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.7
    • /
    • pp.690-695
    • /
    • 2003
  • Soft-solution route employing PVA(Polyvinyl Alcohol) as a polymeric carrier in a mixed metal cation solution was used for synthesis of single-phase nickel aluminate (NiA1$_2$O$_4$) powders. The PVA ensured the homogeneous distribution of metal ions in the solution and it resulted in the decrease of crystallization temperature. The synthesized powders prepared by PVA addition were soft and ball-milled easily. The ball-milled powders of about 300 nm in size were fully densified to density of 4.35 g/㎤ at 1600$^{\circ}C$ for 1 h. The Vickers hardness, flexural strength, fracture toughness and thermal expansion coefficient of the sintered nickel aluminate were 14.2 ㎬, 304 ㎫, 4.8 ㎫$.$m$\^$1/2/ and 9.8${\times}$10$\^$-6//$^{\circ}C$, respectively.

Dissolution Characteristics of Hydrophobic Drug-Soluble Carrier Coprecipitate (I)-Enhanced Dissolution Rates of Furosemide from Furosemide Polymer Coprecipitates-

  • Shin, Sang-Chull;Lee, Min-Hwa;Woo, Jong-Hak
    • Journal of Pharmaceutical Investigation
    • /
    • v.6 no.3
    • /
    • pp.48-57
    • /
    • 1976
  • An enhancement in the dissolution rate of the drug should facilitate its GI absorption if the absorption process is dissolution rate limited. One of the need for the techniques that can potentially enhance the dissolution rate and extent of absorption of hydrophobic drugs is the formation of coprecipitates with pharmacologically inert, polymeric materials. The physicochemical modification offers the advantage of possibly enabling one to administer the drug orally in a form from which it is most available for GI absorption. Several $investigation^{1-15)}$ demonstrated that the formation of solid dispersions or coprecipitates of relatively water-insoluble drugs with various pharmacologically inert carriers can increase singnificantly their in vitro dissolution rates. However, little information is available in the literature related to the dissolution rate patterns of furosemide, a water-insoluble diurectices, with respect to the sort of copolymer and the ratio of coprecipitates as a function of time, respectively. The purpose of the present investigation was to ascertain, the general applicability of the copolymers to use fore more fast, enhanced dissolution techniques of furosemide. To accomplish the need for enhancement in the dissolution rate of furosemide, varying ratio coprecipitates with different water-soluble polymers, such as polyvinylpyrrolidone (PVP), polyethylene glycol 4000(PEG 4000), and polyethylene glycol 6000 (PEG 6000), were quantitatively studied by comparing their dissolution characteristics of furosemide. The dissolution patterns of pure furosemide, varying ratio furosemide-PVP coprecipitates, (1:2, 1:5, and 1:9(w/w)), furosemide-PEG 4000 coprecipitates (1:4, 1:9, and 1:19(w/w), furosemide-PEG 6000 coprecipitates(1:4, 1:9, and 1:19(w/w)), and the same ratio physical mixtures, respectively, were compared by the amount dissolved as a function of time.

  • PDF

Targeted Gene Delivery of the Cationic Lipid Emulsion System Containing Folate-PEG-DPPE (Folate-PEG-DPPE를 포함하는 양이온성 지질 에멀젼 시스템의 표적화 유전자 전달)

  • Kwon, Sang-Kyoo;Jeong, Kwan-Ho;Kim, Young-Jin
    • Polymer(Korea)
    • /
    • v.33 no.3
    • /
    • pp.213-218
    • /
    • 2009
  • A cationic lipid emulsion containing 1,2-dioleoyl-3-trimethylammonium-propane(DOTAP), Tween80, squalene has been prepared as a gene delivery system. In order to increase the transfection efficiency of gene carrier, folate was used as the tumor-targeting ligand that was attached on PEG-DPPE. HeLa and 293 cells were used for the in vitro transfection experiment. HeLa cell is a folate-positive cell line. The mean particle sizes of polymeric lipid system and DNA/lipid complex system were 206.6 nm and 150.5 nm, respectively. The transfection efficiencies of our carriers(4:l(w:w) complex ratio)were 100 times higher than that of DOTAP only emulsion due to the targeting effect of folate.

Preparation of Core-shell Type Nanoparticles of Poly($\varepsilon$-caprolactone) /Poly(ethylene glycol)/Poly( $\varepsilon$-caprolactone) Triblock Copolymers

  • Ryu, Jae Gon;Jeong, Yeong Il;Kim, Yeong Hun;Kim, In Suk;Kim, Do Hun;Kim, Seong Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.5
    • /
    • pp.467-475
    • /
    • 2001
  • A triblock copolymer based on $poly(\varepsilon-caprolactone)$ (PCL) as the hydrophobic part and poly(ethylene glycol) (PEG) as the hydrophilic portion was synthesized by a ring-opening mechanism of ${\varepsilon}-caprolactone$ with PEG containing a hydroxyl group at bot h ends as an initiator. The synthesized block copolymers of PCL/PEG/PCL (CEC) were confirmed and characterized using various analysis equipment such as 1H NMR, DSC, FT-IR, and WAXD. Core-shell type nanoparticles of CEC triblock copolymers were prepared using a dialysis technique to estimate their potential as a colloidal drug carrier using a hydrophobic drug. From the results of particle size analysis and transmission electron microscopy, the particle size of CEC core-shell type nanoparticles was determined to be about 20-60 nm with a spherical shape. Since CEC block copolymer nanoparticles have a core-shell type micellar structure and small particle size similar to polymeric micelles, CEC block copolymer can self-associate at certain concentrations and the critical association concentration (CAC) was able to be determined by fluorescence probe techniques. The CAC values of the CEC block copolymers were dependent on the PCL block length. In addition, drug loading contents were dependent on the PCL block length: the larger the PCL block length, the higher the drug loading content. Drug release from CEC core-shell type nanoparticles showed an initial burst release for the first 12 hrs followed by pseudo-zero order release kinetics for 2 or 3 days. CEC-2 block copolymer core-shell type nanoparticles were degraded very slowly, suggesting that the drug release kinetics were governed by a diffusion mechanism rather than a degradation mechanism irrelevant to the CEC block copolymer composition.

Fabrication of Vertically Oriented ZnO Micro-crystals array embedded in Polymeric matrix for Flexible Device (수열합성을 이용한 ZnO 마이크로 구조의 성장 및 전사)

  • Yang, Dong Won;Lee, Won Woo;Park, Won IL
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.4
    • /
    • pp.31-37
    • /
    • 2017
  • Recently, there has been substantial interest in flexible and wearable devices whose properties and performances are close to conventional devices on hard substrates. Despite the advancement on flexible devices with organic semiconductors or carbon nanotube films, their performances are limited by the carrier scattering at the molecular to molecular or nanotube-to-nanotube junctions. Here in this study, we demonstrate on the vertical semiconductor crystal array embedded in flexible polymer matrix. Such structures can relieve the strain effectively, thereby accommodating large flexural deformation. To achieve such structure, we first established a low-temperature solution-phase synthesis of single crystalline 3D architectures consisting of epitaxially grown ZnO constituent crystals by position and growth direction controlled growth strategy. The ZnO vertical crystal array was integrated into a piece of polydimethylsiloxane (PDMS) substrate, which was then mechanically detached from the hard substrate to achieve the freestanding ZnO-polymer composite. In addition, the characteristics of transferred ZnO were confirmed by additional structural and photoluminescent measurements. The ZnO vertical crystal array embedded in PDMS was further employed as pressure sensor that exhibited an active response to the external pressure, by piezoelectric effect of ZnO crystal.

Preparation and Characterization of PEG-PLA(PLGA) Micelles for Solubilization of Rosiglitazone (Rosiglitazone 가용화를 위한 PEG-PLA(PLGA) 고분자 미셀의 제조 및 특성분석)

  • Kim, Yon-Hwan;Im, Jeong-Hyuk;Min, Hyun-Su;Kim, Jun-Ki;Lee, Yong-Kyu;Park, Go-Eun;Cho, Kwang-Jae;Huh, Kang-Moo
    • Polymer(Korea)
    • /
    • v.34 no.3
    • /
    • pp.274-281
    • /
    • 2010
  • In this study, PEG-PLA(or PLGA) amphiphilic di-block copolymers were synthesized by ring opening polymerization of D,L-lactide(or glycolide) and applied to polymeric micelle system for solubilization of a rosiglitazone as diabetes drug. The drug could be efficiently loaded into the polymer micelle by solid dispersion technique, and the drug-loaded micelles were characterized and evaluated as a drug delivery carrier by fluorescence spectrometer, DSC, and DLS measurements. The colloidal stability of drug loaded micelles in aqueous media could be enhanced by addition of 2-hydroxy-N-picolylnitinamide as a hydrotropic agent. The polymer micelles also showed biocompatible and nontoxic properties in vitro cell viability using MTT assay, and the drug loaded micelles were observed to be more effective than free drug for decreasing glucose in blood of rats.

Improved Dissolution and Characterization of Solid Dispersed Atorvastatin Calcium (아토르바스타틴 칼슘 고체분산체의 특성화 및 용출율 개선)

  • Lee, Jun-Hee;Ku, Jeong;Park, Jung-Soo;Park, Jong-Hak;Ahn, Sik-Il;Mo, Jong-Hyun;Kim, Yun-Tae;Rhee, John-M.;Lee, Hai-Bang;Khang, Gil-Son
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.2
    • /
    • pp.111-117
    • /
    • 2008
  • To overcome the solubility of poorly water-soluble drug, the formation of solid dispersion using a spray-dryer with polymeric material, that can potentially enhance the dissolution rate extend of drug absorption was considered in this study. $Eudragit^{(R)}$ E100 as carrier for solid dispersion is acrylate copolymer that soluble in acidic buffer solutions (below pH 5.0). It was used to increase dissolution of atorvastatin calcium as a water-insoluble drug in acidic environments. In this study, a spray-dryer was used to prepare solid dispersion of atorvastatin calcium and $Eudragit^{(R)}$ E100 for purpose of improving the solubility of drug. Atorvastatin calcium and $Eudragit^{(R)}$ E100 were dissolved in ethanol and spray-dryed. DSC and XRD were used to analyze the crystallinity of the sample. It was found that atorvastatin calcium is amorphous in the $Eudragit^{(R)}$ E100 solid dispersion. FT-IR was used to analyze the salt formation by interaction between atorvastatin calcium and $Eudragit^{(R)}$ E100. Comparative dissolution study exhibited better dissolution characteristics than the commercial drug ($Lipitor^{(R)}$) as control. The dissolution rate of atorvastatin calcium was markedly increased in solid dispersion system in simulated gastric juice (pH 1.2). This study proposed that this solid dispersion system improved the bioavailability of poorly water-soluble atorvastatin calcium.