Browse > Article
http://dx.doi.org/10.6117/kmeps.2017.24.4.031

Fabrication of Vertically Oriented ZnO Micro-crystals array embedded in Polymeric matrix for Flexible Device  

Yang, Dong Won (Division of Materials Science and Engineering, Hanyang University)
Lee, Won Woo (Division of Materials Science and Engineering, Hanyang University)
Park, Won IL (Division of Materials Science and Engineering, Hanyang University)
Publication Information
Journal of the Microelectronics and Packaging Society / v.24, no.4, 2017 , pp. 31-37 More about this Journal
Abstract
Recently, there has been substantial interest in flexible and wearable devices whose properties and performances are close to conventional devices on hard substrates. Despite the advancement on flexible devices with organic semiconductors or carbon nanotube films, their performances are limited by the carrier scattering at the molecular to molecular or nanotube-to-nanotube junctions. Here in this study, we demonstrate on the vertical semiconductor crystal array embedded in flexible polymer matrix. Such structures can relieve the strain effectively, thereby accommodating large flexural deformation. To achieve such structure, we first established a low-temperature solution-phase synthesis of single crystalline 3D architectures consisting of epitaxially grown ZnO constituent crystals by position and growth direction controlled growth strategy. The ZnO vertical crystal array was integrated into a piece of polydimethylsiloxane (PDMS) substrate, which was then mechanically detached from the hard substrate to achieve the freestanding ZnO-polymer composite. In addition, the characteristics of transferred ZnO were confirmed by additional structural and photoluminescent measurements. The ZnO vertical crystal array embedded in PDMS was further employed as pressure sensor that exhibited an active response to the external pressure, by piezoelectric effect of ZnO crystal.
Keywords
ZnO; Semiconductor; Nanorod; Flexible device; Pressure-sensor;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Y. J. Ma, M. Pharr, L. Wang, J. Kim, Y. H. Liu, Y. G. Xue, R. Ning, X. F. Wang, H. U. Chung, X. Feng, J. A. Rogers, and Y. Huang, "Soft Elastomers with Ionic Liquid-Filled Cavities as Strain Isolating Substrates for Wearable Electronics", Small, 13(9) (2017).
2 A. Koh, D. Kang, Y. Xue, S. Lee, R. M. Pielak, J. Kim, T. Hwang, S. Min, A. Banks, P. Bastien, M. C. Manco, L. Wang, K. R. Ammann, K. I. Jang, P. Won, S. Han, R. Ghaffari, U. Paik, M. J. Slepian, G. Balooch, Y. G. Huang, and J. A. Rogers, "A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat", Sci. Transl. Med., 8 (366) (2016).
3 J. A. Rogers, "WEARABLE ELECTRONICS Nanomesh onskin electronics", Nat. Nanotechnol., 12(9), 839 (2017).   DOI
4 X. F. Wang, Y. J. Ma, Y. G. Xue, H. W. Luan, M. Pharr, X. Feng, J. A. Rogers, and Y. G. Huang, "Collapse of liquidoverfilled strain-isolation substrates in wearable electronics", Int. J. Solids. Struct., 117, 137 (2017).   DOI
5 X. Jin, C. S. Jiang, E. M. Song, H. Fang, J. A. Rogers, and M. A. Alam, "Stability of MOSFET-Based Electronic Components in Wearable and Implantable Systems", IEEE T. Electron. Dev., 64(8), 3443 (2017).   DOI
6 J. Kim, P. Gutruf, A. M. Chiarelli, S. Y. Heo, K. Cho, Z. Q. Xie, A. Banks, S. Han, K. I. Jang, J. W. Lee, K. T. Lee, X. Feng, Y. G. Huang, M. Fabiani, G. Gratton, U. Paik, and J. A. Rogers, "Miniaturized Battery-Free Wireless Systems for Wearable Pulse Oximetry", Adv. Funct. Mater., 27(1) (2017).
7 Y. P. Zang, F. J. Zhang, D. Z. Huang, X. K. Gao, C. A. Di, and D. B. Zhu, "Flexible suspended gate organic thin-film transistors for ultra-sensitive pressure detection", Nature Communications, 6 (2015).
8 S. K. Gupta, P. Jha, A. Singh, M. M. Chehimi, and D. K. Aswal, "Flexible organic semiconductor thin films", J. Mater. Chem. C., 3(33), 8468 (2015).   DOI
9 T. Sasaki, M. Sakai, T. Ko, Y. Okada, H. Yamauchi, K. Kudo, Y. Sadamitsu, and S. Shinamura, "Solvent-Free Printing of Flexible Organic Thin Film Transistors by Ultrasonic Welding", Adv. Electron. Mater., 2(3) (2016).
10 S. J. Kim, M. Jang, H. Y. Yang, J. Cho, H. S. Lim, H. Yang, and J. A. Lim, "Instantaneous Pulsed-Light Cross-Linking of a Polymer Gate Dielectric for Flexible Organic Thin-Film Transistors", Acs. Appl. Mater. Inter., 9(13), 11721 (2017).   DOI
11 B. W. Zhu, Z. Q. Niu, H. Wang, W. R. Leow, H. Wang, Y. G. Li, L. Y. Zheng, J. Wei, F. W. Huo, and X. D. Chen, "Microstructured Graphene Arrays for Highly Sensitive Flexible Tactile Sensors", Small, 10(18), 3625 (2014).   DOI
12 Y. G. Sun, and J. A. Rogers, "Inorganic semiconductors for flexible electronics", Adv. Mater., 19(15), 1897 (2007).   DOI
13 S. M. Niu, Y. F. Hu, X. N. Wen, Y. S. Zhou, F. Zhang, L. Lin, S. H. Wang, and Z. L. Wang, "Enhanced Performance of Flexible ZnO Nanowire Based Room-Temperature Oxygen Sensors by Piezotronic Effect", Adv. Mater., 25(27), 3701 (2013).   DOI
14 L. D. Li, L. L. Gu, Z. Lou, Z. Y. Fan, and G. Z. Shen, "ZnO Quantum Dot Decorated Zn2SnO4 Nanowire Heterojunction Photodetectors with Drastic Performance Enhancement and Flexible Ultraviolet Image Sensors", Acs. Nano., 11(4), 4067 (2017).   DOI
15 M. Y. Tsai, A. Tarasov, Z. R. Hesabi, H. Taghinejad, P. M. Campbell, C. A. Joiner, A. Adibi, and E. M. Vogel, "Flexible MoS2 Field-Effect Transistors for Gate-Tunable Piezoresistive Strain Sensors", Acs. Appl. Mater. Inter., 7(23), 12850 (2015).   DOI
16 S. W. Jung, W. I. Park, H. D. Cheong, G. C. Yi, H. M. Jang, S. Hong, and T. Joo, "Time-resolved and time-integrated photoluminescence in ZnO epilayers grown on $Al_2O_3(0001)$ by metalorganic vapor phase epitaxy", Appl. Phys. Lett., 80(11), 1924 (2002).   DOI
17 Q. Yang, W. H. Wang, S. Xu, and Z. L. Wang, "Enhancing Light Emission of ZnO Microwire-Based Diodes by Piezo-Phototronic Effect", Nano. Lett., 11(9), 4012 (2011).   DOI
18 S. S. Hong, T. Joo, W. I. Park, Y. H. Jun, and G. C. Yi, "Timeresolved photoluminescence of the size-controlled ZnO nanorods", Appl. Phys. Lett., 83(20), 4157 (2003).   DOI
19 W. I. Park, G. C. Yi, M. Y. Kim, and S. J. Pennycook, "ZnO nanoneedles grown vertically on Si substrates by non-catalytic vapor-phase epitaxy", Adv. Mater., 14(24), 1841 (2002).   DOI
20 S. H. Jung, E. Oh, K. H. Lee, W. Park, and S. H. Jeong, "A sonochemical method for fabricating aligned ZnO nanorods", Adv. Mater., 19(5), 749 (2007).   DOI
21 Q. Yang, X. Guo, W. H. Wang, Y. Zhang, S. Xu, D. H. Lien, and Z. L. Wang, "Enhancing Sensitivity of a Single ZnO Micro-/Nanowire Photodetector by Piezo-phototronic Effect", Acs. Nano., 4(10), 6285 (2010).   DOI
22 H. Zhang, Y. F. Hu, Z. P. Wang, Z. Y. Fang, and L. M. Peng, "Performance Boosting of Flexible ZnO UV Sensors with Rational Designed Absorbing Antireflection Layer and Humectant Encapsulation", Acs. Appl. Mater. Inter., 8(1), 381 (2016).   DOI
23 G. A. Zhu, R. S. Yang, S. H. Wang, and Z. L. Wang, "Flexible High-Output Nanogenerator Based on Lateral ZnO Nanowire Array", Nano. Lett., 10(8), 3151 (2010).   DOI
24 M. X. Chen, C. F. Pan, T. P. Zhang, X. Y. Li, R. R. Liang, and Z. L. Wang, "Tuning Light Emission of a Pressure-Sensitive Silicon/ZnO Nanowires Heterostructure Matrix through Piezo-phototronic Effects", Acs. Nano., 10(6), 6074 (2016).   DOI
25 R. R. Bao, C. F. Wang, L. Dong, R. M. Yu, K. Zhao, Z. L. Wang, and C. F. Pan, "Flexible and Controllable Piezo-Phototronic Pressure Mapping Sensor Matrix by ZnO NW/p-Polymer LED Array", Adv. Funct. Mater., 25(19), 2884 (2015).   DOI
26 H. J. Cho, S. J. Kim, S. J. Choi, J. S. Jang, and I. D. Kim, "Facile synthetic method of catalyst-loaded ZnO nanofibers composite sensor arrays using bio-inspired protein cages for pattern recognition of exhaled breath", Sensor. Actuat. B-Chem., 243, 166 (2017).   DOI
27 J. Y. Park, D. E. Song, and S. S. Kim, "An approach to fabricating chemical sensors based on ZnO nanorod arrays", Nanotechnology, 19(10) (2008).
28 M. Thepnurat, T. Chairuangsri, N. Hongsith, P. Ruankham, and S. Choopun, "Realization of Interlinked ZnO Tetrapod Networks for UV Sensor and Room-Temperature Gas Sensor", Acs. Appl. Mater. Inter., 7(43), 24177 (2015).   DOI
29 C. F. Wang, R. R. Ba, K. Zhao, T. P. Zhang, L. Dong, and C. F. Pan, "Enhanced emission intensity of vertical aligned flexible ZnO nanowire/p-polymer hybridized LED array by piezo-phototronic effect", Nano Energy, 14, 364 (2015).   DOI
30 S. Maiti, U. N. Maiti, and K. K. Chattopadhyay, "Three dimensional ZnO nanostructures realized through a polymer mediated aqueous chemical route: candidate for transparent flexible electronics", Crystengcomm, 14(23), 8244 (2012).   DOI
31 D. -H. Mun, and J. -S. Ha, "The Effect of Precursor Concentration on ZnO Nanorod Grown by Low-temperature Aqueous Solution Method", J. Microelectron. Packag. Soc., 20(1), 33 (2013).   DOI
32 J. Jang, T. -S Oh, and J.- S Ha, "Three dimensional ZnO nanostructures realized through a polymer mediated aqueous chemical route: candidate for transparent flexible electronics", J. Microelectron. Packag. Soc., 21(4), 45 (2014)   DOI
33 J. M. Lee, Y. S. No, S. Kim, H. G. Park, and W. I. Park, "Strong interactive growth behaviours in solution-phase synthesis of three-dimensional metal oxide nanostructures", Nature Communications, 6 (2015).
34 D. W. Yang, D. Yoo, W. W. Lee, J. M. Lee, G. C. Yi, and W. I. Park, "Three-dimensionally-architectured GaN light emitting crystals", Crystengcomm, 19(15), 2007 (2017).   DOI
35 W. W. Lee, J. Yi, S. B. Kim, Y. H. Kim, H. G. Park, and W. I. Park, "Morphology-Controlled Three-Dimensional Nanoarchitectures Produced by Exploiting Vertical and In-Plane Crystallographic Orientations in Hydrothermal ZnO Crystals", Cryst. Growth. Des., 11(11), 4927 (2011).   DOI
36 W. W. Lee, S. B. Kim, J. Yi, W. T. Nichols, and W. I. Park, "Surface Polarity-Dependent Cathodoluminescence in Hydrothermally Grown ZnO Hexagonal Rods", J. Phys. Chem. C., 116(1), 456 (2012).   DOI
37 W. W. Lee, S. Chang, D. W. Yang, J. M. Lee, H. G. Park, and W. I. Park, "Three-dimensional epitaxy of single crystalline semiconductors by polarity-selective multistage growth", Crystengcomm, 18(42), 8262 (2016).   DOI