• Title/Summary/Keyword: polymeric biomaterials

Search Result 35, Processing Time 0.033 seconds

Enhancement of the Escherichia coli Floc Strength with Water Soluble Polymers

  • KIM, CHAN-WHA;CHOKYUN RHA
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.4
    • /
    • pp.282-286
    • /
    • 1997
  • The floc strength of Escherichia coli was enhanced by adding water soluble polymer flocculants (BPA-5020 and BPA-5000) to the particulate flocculant (BPA-1000) as indicated by the increase in the shear index. The shear index of the E. coli flocs increased from 0.39 with the particulate flocculant alone to 0.94 with the particulate flocculant in conjunction with the water soluble polymer flocculant. In addition, the sedimentation rate of flocs was higher and the sedimented volume of flocs was smaller when the particulate flocculant was used with the water soluble polymer flocculant. When E. coli was flocculated first with the water soluble flocculant and the particulate flocculant was added later into the E. coli flocs formed, the sedimentation rate of the flocs was greater than that of any other combination. The shear index of the flocs was, however, independent of the sequence of the flocculant addition.

  • PDF

Designing Materials for Hard Tissue Replacement

  • Nath, Shekhar;Basu, Bikramjit
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.1
    • /
    • pp.1-29
    • /
    • 2008
  • In last two decades, an impressive progress has been recorded in terms of developing new materials or refining existing material composition/microstructure in order to obtain better performance in biomedical applications. The success of such efforts clearly demands better understanding of various concepts, e.g. biocompatibility, host response, cell-biomaterial interaction. In this article, we review the fundamental understanding that is required with respect to biomaterials development, as well as various materials and their properties, which are relevant in applications, such as hard tissue replacement. A major emphasize has been placed to present various design aspects, in terms of materials processing, of ceramics and polymer based biocomposites, Among the bioceramic composites, the research results obtained with Hydroxyapatite (HAp)-based biomaterials with metallic (Ti) or ceramic (Mullite) reinforcements as well as $SiO_2-MgO-Al_2O_3-K_2O-B_2O_3-F$ glass ceramics and stabilized $ZrO_2$ based bioinert ceramics are summarized. The physical as well as tribological properties of Polyethylene (PE) based hybrid biocomposites are discussed to illustrate the concept on how can the physical/wear properties be enhanced along with biocompatibility due to combined addition of bioinert and bioactive ceramic to a bioinert polymeric matrix. The tribological and corrosion properties of some important orthopedic metallic alloys based on Ti or Co-Cr-Mo are also illustrated. At the close, the future perspective on orthopedic biomaterials development and some unresolved issues are presented.

Study on Radial Force of Helical Structure for Biodegradable Polymer Stents (생분해성 고분자 스텐트를 위한 나선헝 구조의 팽창력 연구)

  • Park, Chul-Ho;Park, Ga-Ram;Choi, Ji-Yeon;Park, Kwi-Deok;Han, Dong-Keun
    • Polymer(Korea)
    • /
    • v.35 no.3
    • /
    • pp.260-264
    • /
    • 2011
  • Biodegradable polymeric stents have been issued to replace the existing non-degradable metal stents due to relatively improved biocompatibility and low side effects. Fundamentally, all the stents must possess the desired mechanism strength, especially, compression or radial force to maintain the diameters of expanded vessels. Therefore, this study suggests a helical structure and focused on the relation between the lateral compression and structural factors, Unlike a cylindrical model, the radial force of the helical model is proportional to the thickness and the length to the power of one, whereas the diameter to the power of 1.6. The function obtained from these results might provide the fundamental information to design and prepare the stem for clinical applications.

Evaluation of Porous PLLA Scaffold for Chondrogenic Differentiation of Stem Cells

  • Jung, Hyun-Jung;Park, Kwi-Deok;Ahn, Kwang-Duk;Ahn, Dong-June;Han, Dong-Keun
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.268-268
    • /
    • 2006
  • Due to their multipotency, stem cells can differentiate into a variety of specialized cell types, such as chondrocytes, osteoblasts, myoblasts, and nerve cells. As an alternative to mature tissue cells, stem cells are of importance in tissue engineering and regenerative medicine. Since interactions between scaffold and cells play an important role in the tissue development in vitro, synthetic oligopeptides have been immobilized onto polymeric scaffolds to improve specific cell attachment and even to stimulate cell differentiation. In this study, chondrogenic differentiation of stem cells was evaluated using surface-modified PLLA scaffolds, i.e., either hydrophilic acrylic acid (AA)-grafted PLLA or RGD-immobilized one. Porous PLLA scaffolds were prepared using a gas foaming method, followed by plasma treatment and subsequent grafting of AA to introduce a hydrophilicity (PLLA-PAA). This was further processed to fix RGD peptide to make an RGD-immobilized scaffold (PLLA-PAA-RGD). Stem cells were seeded at $1{\times}10^{6}$ cells per scaffold and the cell-PLLA constructs were cultured for up to 4 weeks in the chondrogenic medium. Using these surface-modified scaffolds, adhesion, proliferation, and chondrogenic differentiation of stem cells were evaluated. The surface of PLLA scaffolds turned hydrophilic (water contact angle, 45 degrees) with both plasma treatment and AA grafting. The hydrophilicity of RGD-immobilized surface was not significantly altered. Cell proliferation rate on the either PLLA-PAA or PLLA-PAA-RGD surface was obviously improved, especially with the RGD-immobilized one as compared to the control PLLA one. Chondrogenic differentiation was clearly identified with Safranin O staining of GAG in the AA- or RGD-grafted PLLA substrates. This study demonstrated that modified polymer surfaces may provide better environment for chondrogenesis of stem cells.

  • PDF

Biodegradable PLGA Polymer Coating on Biomedical Metal Implants Using Electrospraying (전기분사를 이용한 의료용 금속 임플란트의 생분해성 PLGA 고분자 코팅)

  • Cho, Seong-Bae;Park, Chul-Ho;Park, Kwi-Deok;Chung, Dong-Jun;Han, Dong-Keun
    • Polymer(Korea)
    • /
    • v.33 no.6
    • /
    • pp.620-624
    • /
    • 2009
  • Biomedical metal implants have been used clinically for replacement, restoration, or improvement of injury bodies based on high mechanical properties, but it has some risks such as the inflammatory, late thrombosis, or restenosis due to the low biocompatibility and toxicity. In various techniques of surface treatment developed to preserve these drawbacks, this study examined the electrospray coating technology with biodegradable poly (lactic-co-glycoic acid) (PLGA) on metal surface. Based on fundamental examination of electrospraying and solution parameters, the surface morphology of coated film was closely related to the boiling point of solvent, in-flight distance, and droplet size. The thickness of polymer film was linearly proportional to the emerged volume. This result exhibits that the polymeric droplets were continuously deposited on the polymer film. Therefore, the electrospray coating technology might be applied into the fabrication of single/multi-layered polymer film in nano-/micro-thickness and the control of the topology for biomedical metal implants including stents.

Isolation and Proteomic Analysis of a Chlamydomonas reinhardtii Mutant with Enhanced Lipid Production by the Gamma Irradiation Method

  • Baek, Jaewon;Choi, Jong-il;Park, Hyun;Lim, Sangyong;Park, Si Jae
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.12
    • /
    • pp.2066-2075
    • /
    • 2016
  • In this study, an enhanced lipid-producing mutant strain of the microalga Chlamydomonas reinhardtii was developed by gamma irradiation. To induce the mutation, C. reinhardtii was gamma irradiated at a dose of 400 Gy. After irradiation, the surviving cells were stained with Nile red. The mutant (Cr-4013) accumulating 20% more lipid than the wild type was selected. Thin-layer chromatography revealed the triglyceride and free fatty acid contents to be markedly increased in Cr-4013. The major fatty acids identified were palmitic acid, oleic acid, linoleic acid, and linolenic acid. Random amplified polymeric DNA analysis showed partial genetic modifications in Cr-4013. To ascertain the changes of protein expression in the mutant strain, two-dimensional electrophoresis was conducted. These results showed that gamma radiation could be used for the development of efficient microalgal strains for lipid production.

Role of Catechol in the Stability of Biocoating Materials in Wet Environment (바이오 코팅 재료의 습윤 안정성에 대한 카테콜 작용기의 역할)

  • Lee, Damjung;Lee, Kyueui
    • Applied Chemistry for Engineering
    • /
    • v.33 no.2
    • /
    • pp.216-221
    • /
    • 2022
  • Biocompatible polysaccharide coating technology can be a promising solution to overcome unexpected diseases caused by inflammatory reactions of metallic biomaterials (e.g., stent restenosis, etc.). However, due to their inherent hydrophilicity, it is difficult to maintain the coating layer for a long time in the physiological wet-environment. Herein, catechol functionalized hyaluronic acid was synthesized and introduced to the polymeric stent (polylactic acid) as the adhesive biocoating material. Surprisingly, even with the low degree of substitution of catechol (1.26%), a significant improvement in the underwater stability was observed, confirmed by capillary experiments and spectroscopic analysis. Our results may provide an insight into the positive role of catechol molecular adhesive group in the in-vivo stability of biocoating materials.

A review on three dimensional scaffolds for tumor engineering

  • Ceylan, Seda;Bolgen, Nimet
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.3 no.3
    • /
    • pp.141-155
    • /
    • 2016
  • Two-dimensional (2D) cell culture and in vivo cancer model systems have been used to understand cancer biology and develop drug delivery systems for cancer therapy. Although cell culture and in vivo model studies have provided critical contribution about disease mechanism, these models present important problems. 2D tissue culture models lack of three dimensional (3D) structure, while animal models are expensive, time consuming, and inadequate to reflect human tumor biology. Up to the present, scaffolds and 3D matrices have been used for many different clinical applications in regenerative medicine such as heart valves, corneal implants and artificial cartilage. While tissue engineering has focused on clinical applications in regenerative medicine, scaffolds can be used in in vitro tumor models to better understand tumor relapse and metastasis. Because 3D in vitro models can partially mimic the tumor microenvironment as follows. This review focuses on different scaffold production techniques and polymer types for tumor model applications in cancer tissue engineering and reports recent studies about in vitro 3D polymeric tumor models including breast, ewing sarcoma, pancreas, oral, prostate and brain cancers.

The Effect of BSA on the Release of Cefadroxil from a Polycaprolactone Matrix (폴리카프로락톤 매트릭스로부터 세파드록실의 방출에 미치는 BSA의 영향)

  • Kim, Seung-Ryul;Jung, Yun-Jin;Kim, Young-Mi;Lee, Chi-Ho;Kim, Dae-Duk
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.5
    • /
    • pp.363-368
    • /
    • 2004
  • In order to investigate the effect of bovine serum albumin (BSA), as a pore former, on the controlled release of an antibiotic from a biodegradable polymeric device, polycaprolactone (PCL)-cefadroxil matrices were prepared by the solvent casting method. The amount of cefadroxil released from various formulations at $37^{\circ}C$ was measured by HPLC. The duration of antimicrobial activity of matrices against S. aureus was evaluated by measuring the diameters of the inhibition zone. The morphology of the matrices was investigated by scanning electron microscopy (SEM). The release rate and extent of cefadroxil from PCL matrix increased as the loading dose and particle size of BSA/cefadroxil mixture powder increased. Cefadroxil released from the matrix exhibited antibacterial activity for up to 4 days. SEM of the cross-section of matrix showed the typical channel formation after 3 days of release study. Thus, a biodegradable polymeric matrix loaded with antibiotic/BSA mixture can effectively prevent bacterial infection on its surface, thereby bringing about an enhancement of biocompatibility of biomaterials.

Surface Characteristics and Fibroblast Adhesion Behavior of RGD-Immobilized Biodegradable PLLA Films

  • Jung Hyun Jung;Ahn Kwang-Duk;Han Dong Keun;Ahn Dong-June
    • Macromolecular Research
    • /
    • v.13 no.5
    • /
    • pp.446-452
    • /
    • 2005
  • The interactions between the surface of scaffolds and specific cells play an important role in tissue engineering applications. Some cell adhesive ligand peptides including Arg-Gly-Asp (RGD) have been grafted into polymeric scaffolds to improve specific cell attachment. In order to make cell adhesive scaffolds for tissue regeneration, biodegradable nonporous poly(L-lactic acid) (PLLA) films were prepared by using a solvent casting technique with chloroform. The hydrophobic PLLA films were surface-modified by Argon plasma treatment and in situ direct acrylic acid (AA) grafting to get hydrophilic PLLA-g-PAA. The obtained carboxylic groups of PLLA-g-PAA were coupled with the amine groups of Gly-Arg-Asp-Gly (GRDG, control) and GRGD as a ligand peptide to get PLLA-g-GRDG and PLLA-g-GRGD, respectively. The surface properties of the modified PLLA films were examined by various surface analyses. The surface structures of the PLLA films were confirmed by ATR-FTIR and ESCA, whereas the immobilized amounts of the ligand peptides were 138-145 pmol/$cm^2$. The PLLA surfaces were more hydrophilic after AA and/or RGD grafting but their surface morphologies showed still relatively smoothness. Fibroblast adhesion to the PLLA surfaces was improved in the order of PLLA control