• Title/Summary/Keyword: polymer nanocomposites

Search Result 376, Processing Time 0.026 seconds

Tailored biomimetic actuators made with multiwalled carbon nanotube loaded ionomeric nanocomposites (생체모방 액츄에이터용 다중탄소나노튜브/고분자 나노복합체)

  • Lee, Se-Jong;Lee, Deuk-Yong;Lee, Myung-Hyun;Kim, Bae-Yeon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.3
    • /
    • pp.108-113
    • /
    • 2005
  • Biomimetic actuators that can produce soft-actuation but large force capability are of interest. Nafion, an effective ionomeric material from DuPont, has been shown to produce large deformation under low electric fields (<10V/mm). Carbon nanotube/polymer nanocomposites were cast to enhance the electromechanical properties of the composites. Multiwalled carbon nanotube (M-CNT)/Nafion nanocomposites were prepared by a solution casting to investigate the effect of M-CNT loading in the range of 0 to 7 wt% on electromechanical properties of the M-CNT/Nafion nanocomposites. The measured elastic modulus and actuation force of the M-CNT/Nafion nanocomposites are drastically different, showing larger elastic modulus and improved electromechanical coupling, from the one without M-CNT.

Nondestructive Sensing Evaluation of Thermal Treated Carbon Nanotube and Nanofiber/Epoxy Composites Using Electrical Resistance Measurement (전기저항 측정 방법을 이용한 표면 처리된 탄소 나노튜브와 나노 섬유 강화된 에폭시 복합재료의 비파괴적 감지능 평가)

  • Jung Jin-Kyu;Park Joung-Man;Kim Dae-Sik;Kim Tae-Wook
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.15-18
    • /
    • 2004
  • Nondestructive damage sensing and mechanical properties for thermal treated carbon nanotube(CNT) and nanofiber(CNF)/epoxy composites were investigated using electro-micromechanical technique. Carbon black (CB) was used only for the comparison. Electro-micromechanical techniques were applied to obtain the fiber damage and stress transferring effect of carbon nanocomposites with their contents. Thermal treatment and temperature affected on apparent modulus and electrical properties on nanocomposites due to enhanced inherent properties of each CNMs. Coefficient of variation (COV) of volumetric electrical resistance can be used to obtain the dispersion degree indirectly for various CNMs. Dispersion and surface modification are very important parameters to obtain improved mechanical and electrical properties of CNMs for multifunctional applications. Further optimized functionalization and dispersion conditions will be investigated for the following work continuously.

  • PDF

Nondestructive Damage Sensitivity for Functionalized Carbon Nanotube and Nanofiber/Epoxy Composites Using Electrical Resistance Measurement and Acoustic Emission (전기저항 측정과 음향방출을 이용한 표면 처리된 탄소 나노튜브와 나노 섬유 강화 에폭시 복합재료의 비파괴적 손상 감지능)

  • Kim, Dae-Sik;Park, Joung-Man;Kim, Tae-Wook
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.42-45
    • /
    • 2003
  • Nondestructive damage sensing and mechanical properties for acid-treated carbon nanotube (CNT) and nanofiber (CNF)/epoxy composites were investigated using electro-micromechanical technique and acoustic emission (AE). Carbon black (CB) was used to compare to CNT and CNF. The results were compared to the untreated case. The fracture of carbon fiber was detected by nondestructive acoustic emission (AE) relating to electrical resistivity under double-matrix composites test. Sensing for fiber tension was performed by electro-pullout test under uniform cyclic strain. The sensitivity for fiber damage such as fiber fracture and fiber tension was the highest for CNT/epoxy composites. Reinforcing effect of CNT obtained from apparent modulus measurement was the highest in the same content. For surface treatment case, the damage sensitivity and reinforcing effect were higher than those of the untreated case. The results obtained from sensing fiber damage were correlated with the morphological observation of nano-scale structure using FE-SEM. The information on fiber damage and matrix deformation and reinforcing effect of carbon nanocomposites could be obtained from electrical resistivity measurement as a new concept of nondestructive evaluation.

  • PDF

Effect of Organic Modifiers and Mixing Times on the Properties of Unsaturated Polyester/Montmorillonite Nanocomposite (유기 개질제의 종류와 혼합 시간에 따른 불포화 폴리에스터/ 몬모릴로나이트 나노복합체의 제조 및 특성)

  • 김호겸;이동호;서관호;김우식;박수영;민경은
    • Polymer(Korea)
    • /
    • v.27 no.6
    • /
    • pp.589-595
    • /
    • 2003
  • Unsaturated polyester (UP) nanocomposite with montmorillonite (MMT) which contains different types of organic modifiers far nano-filler have been prepared to investigate the effect of chemical structure of organic modifiers and mixing time of all components on properties of products. It was found that the morphology and various physical properties of UP/MMT nanocomposites were influenced by properties of organic modifiers of MMTs. It was also confirmed that the content of MMT does not significantly affect properties of UP/MMT nanocomposites.

Reactive Dispersion and Mechanical Property of Dicyanate/Montmorillonite Nanocomposite (반응이 수반된 Dicyanate/Montmorillonite Nanocomposite의 분산과 물성특성 연구)

  • 장원영;이근제;남재도
    • Polymer(Korea)
    • /
    • v.27 no.1
    • /
    • pp.75-83
    • /
    • 2003
  • Dicyanate-clay nanocomposite has been prepared by a melt in-situ polymerization method for different modifiers and cation exchange capacity (CEC) values in order to study dispersion and mechanical property. Various dicyanate nanocomposites were prepared by using different MMT systems containing different intercalants which led to different initial gallery heights and packing density. Depending on compatibility between dicyanate and clays, the degree of dispersion varied. Dispersion of clay plates in dicyanate resin depended mainly on CEC and aliphatic chain length of modifier. The lower CEC and shorter aliphatic chain length of modifier gave the exfoliation structure. It was also found that the reactivity of intercalant with dicyanate resin was one of the key factors facilitating the intercalation/exfoliation process of dicyanate/MMT nanocomposites. Shear modulus of reaction-induced dicyanate nanocomposite was significantly increased.

Application of SiO2 nanocomposite ferroelectric material in preparation of trampoline net for physical exercise

  • Zhanguo Su;Junyan Meng;Yiping Su
    • Advances in nano research
    • /
    • v.14 no.4
    • /
    • pp.355-362
    • /
    • 2023
  • Physical exercise, especially intense exercise and high intensity interval training (HIIT) by trampoline, can lead to muscle injuries. These effects can be reduced with intelligent products made of nanocomposite materials. Most of these nanocomposites are polymers reinforced with silicon dioxide, alumina, and titanium dioxide nanoparticles. This study presents a polymer nanocomposite reinforced with silica. As a result of the rapid reaction between tetraethyl orthosilicate and ammonia in the presence of citric acid and other agents, silica nanostructures were synthesized. By substituting bis (4-amino phenoxy) phenyl-triptycene in N, N-dimethylformamide with potassium carbonate, followed by catalytic reduction with hydrazine and Pd/C, the diamine monomer bis (4-amino phenoxy) phenyl-triptycene is prepared. We synthesized a new polyaromatic (imide) with triptycene unit by sol-gel method from aromatic diamines and dianhydride using pyridine as a condensation reagent in NMP. PI readily dissolves in solvents and forms robust and tough polymer films in situ. The FTIR and NMR techniques were used to determine the effects of SiO2 on the sol-gel process and the structure of the synthesized nanocomposites. By using a simultaneous thermal analysis (DTA-TG) method, the appropriate thermal operation temperature was also determined. Through SEM analysis, the structure, shape, size, and specific surface area of pores were determined. Analysis of XRD results is used to determine how SiO2 affects the crystallization of phases and the activation energy of crystallization.

Physical and Chemical Characteristics of Multi-walled Carbon Nanotube (MWCNT) with Acid-treatment and Coupling Agent on the Properties of Styrene Butadiene Rubber (SBR) (SBR에 산 처리된 MWCNT 및 커플링제 적용 시 발현되는 물리.화학적 특성 연구)

  • Song, Sung-Ho;Jeong, Ho-Kyun;Kang, Yong-Gu;Cho, Choon-Tack
    • Polymer(Korea)
    • /
    • v.34 no.2
    • /
    • pp.108-115
    • /
    • 2010
  • The effects of acid-treated MWCNT and coupling agent on properties of MWCNT/SBR are investigated in this work. The MWCNTs oxidized using sulfuric and nitric acids were analyzed by the Raman scattering and Fourier transformed infrared spectroscopy(FT-IR). The FT-IR results indicate the presence of -COOH groups in the treated samples, and Raman spectroscopy of the acidtreated MWCNTs further corroborates the formation of surface defect due to the introduction of carboxyl groups. And the nanocomposites reinforced with MWCNTs were characterized extensively using the scanning electron microscopy(SEM), electrical conductivity, thermal conductivity, and tensile properties measurements. The results showed that nanocomposites onto acid-treated MWCNTs enhanced mechanical properties compared to those containing MWCNTs without acid treatment. These findings confirmed the improved interfacial interactions between MWCNTs and SBR arising from the coupling agents. But the electrical and thermal conductivity of nanocomposites decreased due to the chopping and formation of surface defects of MWCNTs.

Polyvilylidenefluoride-based Nanocomposite Films Induced-by Exfoliated Boron Nitride Nanosheets with Controlled Orientation

  • Cho, Hong-Baek;Nakayama, Tadachika;Jeong, DaeYong;Tanaka, Satoshi;Suematsu, Hisayuki;Niihara, Koichi;Choa, Yong-Ho
    • Composites Research
    • /
    • v.28 no.5
    • /
    • pp.270-276
    • /
    • 2015
  • Polyvinylidene fluoride (PVDF)-based nanocomposites are fabricated by incorporation of boron nitride (BN) nanosheets with anisotropic orientation for a potential high thermal conducting ferroelectric materials. The PVDF is dissolved in dimethylformamide (DMF) and homogeneously mixed with exfoliated BN nanosheets, which is then cast into a polyimide film under application of high magnetic fields (0.45~10 T), where the direction of the filler alignment was controlled. The BN nanosheets are exfoliated by a mixed way of solvothermal method and ultrasonication prior to incorporation into the PVDF-based polymer suspension. X-ray diffraction, scanning electron microscope and thermal diffusivity are measured for the characterization of the polymer nanocomposites. Analysis shows that BN nanosheets are exfoliated into the fewer layers, whose basal planes are oriented either perpendicular or parallel to the composite surfaces without necessitating the surface modification induced by high magnetic fields. Moreover, the nanocomposites show a dramatic thermal diffusivity enhancement of 1056% by BN nanosheets with perpendicular orientation in comparison with the pristine PVDF at 10 vol % of BN, which relies on the degree of filler orientation. The mechanism for the magnetic field-induced orientation of BN and enhancement of thermal property of PVDF-based composites by the BN assembly are elucidated.

Assessment on the Flame Retardancy for Polyethylene/Montmorillonite Nanocomposite (Polyethylene/Montmorillonite Nanocomposite의 난연성 평가)

  • Song, Young-Ho;Chung, Kook-Sam
    • Fire Science and Engineering
    • /
    • v.20 no.4 s.64
    • /
    • pp.72-76
    • /
    • 2006
  • Polymer/clay nanocomposites have generated considerable interests in the past decade because adding just tiny amount of clay to the polymer matrix could produce a dramatic enhancement in physical, thermal and mechanical properties. Smectite clays, such as montmorillonite (MMT), are of great industrial value because of their high aspect ratio, plate morphology, intercalative capacity, natural abundance and low cost. In this study, PE/MMT nanocomposites were directly prepared by melt intercalating PE and the modified clay. The nanostructure was verified by X-ray diffraction (XRD) and transmission electron microscopy (TEM), and their flame retardant properties were measured and discussed by limiting oxygen index (LOI), char yield and smoke mass concentration. And their thermal stabilities were measured by differential thermogravimetric (DTG) and thermogravimetric analysis (TGA). The PE/MMT nanocomposites proved more effective the conventional composites in reinforcement. Two functions in the thermal stability of the PE/MMT nanocomposite, one is the barrier effect to improve the thermal stability, and another is catalysis, leading to a decrease of the thermal stability. The flammability was greatly decreased due to the formation of the clay-enriched protective char during the combustion.