• Title/Summary/Keyword: polymer nanocomposites

Search Result 376, Processing Time 0.024 seconds

Effect of Interfacial Modification on the Characteristics of Poly(ethyl acrylate-co-t-butyl acrylate)/Silica Nanocomposites (폴리(에틸 아크릴레이트-co-t-부틸 아크릴레이트)/ 실리카 나노복합체 특성에 대한 계면 개질의 효과)

  • 진선욱;한건옥;김형일
    • Polymer(Korea)
    • /
    • v.28 no.6
    • /
    • pp.487-493
    • /
    • 2004
  • The distribution of particles, in the mixture of poly(ethyl acrylate-co-t-butyl acrylate) (PEB) emulsion polymer and silica nanoparticles, was determined mainly depending on the pH of the mixture. The weak interfacial interaction was responsible for the severe coagulation of silica particles and the irregular dispersion for these nanocomposites. Methacryloxypropyltrimethoxysilane (MPS) was used to modify both the polymer and the silica. The nanocomposites which were prepared with these modified components had finer dispersion of silica nanoparticles and core-shell morphology due to the strong interfacial interaction. The strong hydrogen bonds were identified for these nanocomposites with FT-IR. The nanocomposites having strong interfacial interaction showed the increased glass transition temperature, the decreased ΔC$_{p}$ , and the increased decomposition temperature of the polymer chains. polymer chains.

Effect of MMT on Anti-Water Absorption of Polyamide/MMT Nanocomposites (MMT 첨가에 따른 Polyamide/MMT 나노복합체의 흡습 특성)

  • Park, Sang-Cheol;Kim, Ho-Gyum;Min, Kyung-Eun
    • Polymer(Korea)
    • /
    • v.37 no.1
    • /
    • pp.113-120
    • /
    • 2013
  • The melt intercalation to commercialize nanocomposites in a pilot scale was applied and the water absorption characteristics for polyamide/MMT nanocomposites manufactured by twin screw extruder was studied. As a result, water absorption decreased with the introduction of MMT and dimensional stability was improved. However, as water absorption increased, flexural strength and modulus were reduced. Therefore, the effect of MMT introduction on mechanical properties of nanocomposites was clearly observed, which may increase the level of strength by maintaining anti-water absorption property of nanocomposite.

Influence of Graphene Oxide and Graphite Nanoplatelets on Rheological and Electrical Properties of Polystyrene Nanocomposites (산화 그래핀과 나노 흑연이 폴리스티렌 나노복합재료의 유변물성 및 전기적 물성에 미치는 영향)

  • Yeom, Hyo Yeol;Na, Hyo Yeol;Lee, Seong Jae
    • Polymer(Korea)
    • /
    • v.38 no.4
    • /
    • pp.502-509
    • /
    • 2014
  • Carbon-based nanoplatelets such as graphene oxide (GO) sheets and graphite nanoplatelets (GNPs) are frequently used as conductive nanofillers for polymer nanocomposites. In this study, polystyrene (PS)/GO and PS/GNP nanocomposites were prepared through a latex technology and investigated to compare the effect of nanofillers on rheological and electrical properties of the PS nanocomposites. PS particles were prepared by emulsifier-free emulsion polymerization and GO was synthesized by using the modified Hummers' method from graphite. Hydrophilic GO was dispersed in aqueous PS suspension, but hydrophobic GNPs were dispersed with the help of a surfactant. In comparison with PS/GO nanocomposites, the rheological properties of PS/GNP counterparts were not too high because GNP existed in aggregates of graphene layers. Conducting pathways of PS/GO and PS/GNP nanocomposites were achieved at the electrical percolation threshold of 0.50 and 5.82 wt%, respectively. The reason for enhanced electrical conductivity in PS/GO nanocomposites is that GO was thermally reduced during molding.

Development of Poly(methyl methacrylate)-Clay Nanocomposites by Using Power Ultrasonic Wave

  • Ryu, Joung Gul;Lee, Jae Wook;Kim, Hyungsu
    • Macromolecular Research
    • /
    • v.10 no.4
    • /
    • pp.187-193
    • /
    • 2002
  • Several methods have been used to synthesize polymer-clay nanocomposites. In-situ polymerization with clay belongs to a classical way to develop nano-structured materials, while melt intercalation is being recognized as another useful approach due to its versatility and environmentally benign character. In this research, we prepared polymer-clay nanocomposites based on the poly (methyl methacrylate) and organically modified montmorillonite via two-stage sonication process. According to the unique mode of power ultrasonic wave, the sonication during processing led to enhanced breakup of the clay agglomerates and reduction in size of the dispersed phase. Optimum conditions to form stable exfoliated nanocomposites were studied for various compositions and conditions. It was found that a novel attempt carried out in this study yielded further improvement in the mechanical performance of the nanocomposites compared to those produced by the conventional melt mixing process, as revealed by DMA, XRD and TEM. And rheological properties of nanocomposites were measured by ARES. As a result, sonicated PMMA-clay nanocomposites exhibits enhanced properties such as storage modulus and thermal stability than that of neat PMMA.

Disordering of Clay Layers in the Nylon 6/Clay Nanocomposites Prepared by Anionic Polymerization

  • Park Jung Hoon;Kim Woo Nyon;Kye Hyoung-san;Lee Sang-Soo;Park Min;Kim Junkyung;Lim Soonho
    • Macromolecular Research
    • /
    • v.13 no.5
    • /
    • pp.367-372
    • /
    • 2005
  • As a preliminary work for the preparation of nylon 6/c1ay nanocomposites by reactive extrusion, nylon 6/c1ay nanocomposites were prepared by anionic polymerization in a flask. In order to investigate the effect of the intercalation of clay layers, the clay feeding times, such as in pre-mixing where the clay was fed before initiation of polymerization and in after-mixing method where the clay was fed after initiation of polymerization, were changed. The appearance of the WAXD peak of nanocomposites prepared by the pre-mixing method was obvious and the tensile strength was decreased compared with that of pure nylon 6, which indicates that the clay layers were not dispersed and distributed. During the preparation of the nanocomposites by the after-mixing method, disordering of the clay layers was observed with increasing clay addition time and was suspected to result from the rapid polymerization of nylon 6 within the clay layers.

Preparation of PET Nanocomposites: Dispersion of Nanoparticles and Thermal Properties

  • Her, Ki-Young;Kim, Dae-Heum;Lim, Soon-Ho
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.4
    • /
    • pp.71-73
    • /
    • 2008
  • The development of polymer/inorganic nanocomposites has attracted a great deal of interest due to the improved hybrid properties derived from the two different components. Various nanoscale fillers have been used to enhance polymer mechanical and thermal properties, such as toughness, stiffness, and heat resistance. The effects of the filler on the final properties of the nanocomposites are highly dependent on the filler shape, particle size, aggregate size, surface characteristics, polymer/inorganic interactions, and degree of dispersion. In this paper, we describe the influence of different $CaCO_3$ dispersion methods on the thermal properties of polyethylene terephthalate (PET)/$CaCO_3$ composites: i.e., the adsorption of $CaCO_3$ on the modified PET surface, and the hydrophobic modification of the hydrophilic $CaCO_3$ surface. We prepared PET/$CaCO_3$ nanocomposites using a twin-screw extruder, and investigated their thermal properties and morphology.

Preparation and Characterization of Biodestructive Nanocomposites by Melt Intercalation Method (용융혼합법을 이용한 생붕괴성 나노복합재의 제조 및 분석)

  • Lee, Su-kyung;Youn, Jae-Ryoun
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10b
    • /
    • pp.59-62
    • /
    • 2003
  • Nanocomposites are composite materials consisting of polymer matrix and layered silicate that are interacted in nanometer scale. Layered silicate based polymer nanocomposites have attracted considerable attention because of their excellent properties. Nanocomposites usually exhibit improved performance properties compared with conventional composites due to their unique phase morphology and improved interfacial properties. (omitted)

  • PDF

Influence of TiO2 Nanoparticle Filler on the Properties of PET and PLA Nanocomposites (이산화티탄 나노입자 필러가 PET와 PLA 나노복합체의 특성에 미치는 영향)

  • Farhoodi, Mehdi;Dadashi, Saeed;Mousavi, Seyed Mohammad Ali;Sotudeh-Gharebagh, Rahmat;Emam-Djomeh, Zahra;Oromiehie, Abdolrasul;Hemmati, Farkhondeh
    • Polymer(Korea)
    • /
    • v.36 no.6
    • /
    • pp.745-755
    • /
    • 2012
  • Two types of polymers were tested in this study; poly(ethylene terephthalate) (PET) as a synthetic example and poly(lactic acid) (PLA) as a natural polymer. DSC analyses showed that the use of nanofiller increased the degree of crystallinity ($X_c$) of both PET and PLA polymers, but the effect was more noticeable on PET nanocomposites. The crystallization of PLA and PET nanocomposites occurred at higher temperatures in comparison to neat polymers. According to dynamic mechanical-thermal analysis (DMTA), the damping factor of PET/$TiO_2$ nanoparticles decreased compared to the neat matrix, but for PLA nanocomposites the opposite trend was observed. Results of the mechanical test showed that for both PET and PLA nanocomposites, the most successful toughening effect was observed at 3 wt% loading of $TiO_2$ nanoparticles. SEM micrographs revealed uniform distribution of $TiO_2$ nanoparticles at 1 and 3 wt% loading levels. The results of WAXD spectra explained that the polymorphs of PLA and PET was not affected by $TiO_2$ nanoparticles. UV-visible spectra showed that $TiO_2$ nanocomposite films had high ultraviolet shielding compared to neat polymer, but there was significant reduction in transparency.

Rheological Behavior of Polymer/Layered Silicate Nanocomposites under Uniaxial Extensional Flow

  • Park Jun-Uk;Kim Jeong-Lim;Kim Do-Hoon;Ahn Kyung-Hyun;Lee Seung-Jong;Cho Kwang-Soo
    • Macromolecular Research
    • /
    • v.14 no.3
    • /
    • pp.318-323
    • /
    • 2006
  • We investigated the rheological behaviors and orientation of three different types of layered silicate composite systems under external flow: microcomposite, intercalated and exfoliated nanocomposites. Rheological measurements under shear and uniaxial extensional flows, two-dimensional, small-angle X-ray scattering and transmission electron microscopy were conducted to investigate the properties, as well as nano- and micro-structural changes, of polymer/layered silicate nanocomposites. The preferred orientation of the silicate layers to the flow direction was observed under uniaxial extensional flow for both intercalated and exfoliated systems, while the strain hardening behavior was observed only in the exfoliated systems. The degree of compatibility between the polymer matrix and clay determined the microstructure of polymer/clay composites, strain hardening behavior and spatial orientation of the clays under extensional flow.

Acoustically-enhanced particle dispersion in polystyrene/alumina nanocomposites

  • Philip, Mercy A.;Natarajan, Upendra;Nagarajan, Ramamurthy
    • Advances in nano research
    • /
    • v.2 no.2
    • /
    • pp.121-133
    • /
    • 2014
  • Polymer nanocomposites are advanced nanomaterials which exhibit dramatic improvements in various mechanical, thermal and barrier properties as compared with the neat polymer. Polystyrene/ alumina nanocomposites were prepared by an ultrasound-assisted solution casting method at filler loadings ranging from 0.2 to 2% and also at different ultrasonic frequencies, viz. 58 kHz, 192/58 kHz, 430 kHz, 470 kHz and 1 MHz. The composites were subjected to mechanical property tests (tensile and impact tests) and cavitation erosion tests to study the enhancement in functional properties. Filler dispersion in the polymer matrix was observed by SEM analysis. The effect of frequency on filler dispersion in the matrix was studied by SEM analysis and functional property enhancement of the composite material. The composites prepared at dual (high/ low) frequency (192/58 kHz) were found to show better property enhancement at low filler loadings as compared with neat polymer and also with composites prepared without ultrasound, thus reinforcing the finding that ultrasound-assisted synthesis is a promising method for the synthesis of nanocomposites.