Browse > Article
http://dx.doi.org/10.7317/pk.2014.38.4.502

Influence of Graphene Oxide and Graphite Nanoplatelets on Rheological and Electrical Properties of Polystyrene Nanocomposites  

Yeom, Hyo Yeol (Department of Polymer Engineering, The University of Suwon)
Na, Hyo Yeol (Department of Polymer Engineering, The University of Suwon)
Lee, Seong Jae (Department of Polymer Engineering, The University of Suwon)
Publication Information
Polymer(Korea) / v.38, no.4, 2014 , pp. 502-509 More about this Journal
Abstract
Carbon-based nanoplatelets such as graphene oxide (GO) sheets and graphite nanoplatelets (GNPs) are frequently used as conductive nanofillers for polymer nanocomposites. In this study, polystyrene (PS)/GO and PS/GNP nanocomposites were prepared through a latex technology and investigated to compare the effect of nanofillers on rheological and electrical properties of the PS nanocomposites. PS particles were prepared by emulsifier-free emulsion polymerization and GO was synthesized by using the modified Hummers' method from graphite. Hydrophilic GO was dispersed in aqueous PS suspension, but hydrophobic GNPs were dispersed with the help of a surfactant. In comparison with PS/GO nanocomposites, the rheological properties of PS/GNP counterparts were not too high because GNP existed in aggregates of graphene layers. Conducting pathways of PS/GO and PS/GNP nanocomposites were achieved at the electrical percolation threshold of 0.50 and 5.82 wt%, respectively. The reason for enhanced electrical conductivity in PS/GO nanocomposites is that GO was thermally reduced during molding.
Keywords
nanocomposite; graphene oxide; graphite nanoplatelets; rheological properties; electrical percolation threshold;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 H. M. Ju, S. H. Huh, S. H. Choi, and H. L. Lee, Mater. Lett., 64, 357 (2010).   DOI   ScienceOn
2 A. J. Paine, W. Luymes, and J. McNulty, Macromolecules, 23, 3104 (1990).   DOI
3 F. Du, R. C. Scogna, W. Zhou, S. Brand, J. E. Fischer, and K. I. Winey, Macromolecules, 37, 9048 (2004).   DOI   ScienceOn
4 S. Stankovich, R. D. Piner, X. Chen, N. Wu, S. T. Nguyen, and R. S. Ruoff, J. Mater. Chem., 16, 155 (2006).   DOI   ScienceOn
5 J. Wang, T. Zhou, H. Deng, F. Chen, K. Wang, Q. Zhang, and Q. Fu, Colloid Surf. B, 101, 171 (2013).   DOI   ScienceOn
6 W. Chen, L. Yan, and P. R. Bangal, Carbon, 48, 1146 (2010).   DOI   ScienceOn
7 M. A. Raza, A. Westwood, A. Brown, N. Hondow, and C. Stirling, Carbon, 49, 4269 (2011).   DOI   ScienceOn
8 K. Wakabayashi, P. J. Brunner, J. I. Masuda, S. A. Hewlett, and J. M. Torkelson, Polymer, 51, 5525 (2010).   DOI   ScienceOn
9 Y. Li, J. Zhu, S. Wei, J. Ryu, L. Sun, and Z. Guo, Macromol. Chem. Phys., 212, 1951 (2011).   DOI   ScienceOn
10 S. Ansari and E. P. Giannelis, J. Polym. Sci. Part B: Polym. Phys., 47, 888 (2009).   DOI   ScienceOn
11 M. H. Kang, W. J. Noh, D. K. Woo, and S. J. Lee, Polymer(Korea), 36, 364 (2012).
12 N. I. Kovtyukhova, P. J. Ollivier, B. R. Martin, T. E. Mallouk, S. A. Chizhik, E. V. Buzaneva, and A. D. Gorchinskiy, Chem. Mater., 11, 771 (1999).   DOI   ScienceOn
13 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science, 306, 666 (2004).   DOI   ScienceOn
14 G. Yin, Z. Zheng, H. Wang, Q. Du, and H. Zhang, J. Colloid Interf. Sci., 394, 192 (2013).   DOI   ScienceOn
15 K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, Proc. Natl. Acad. Sci. USA, 102, 10451 (2005).   DOI   ScienceOn
16 Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, Adv. Mater., 22, 3906 (2010).   DOI   ScienceOn
17 S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhass, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. Ruoff, Nature, 442, 282 (2006).   DOI   ScienceOn
18 W. Lee, J. U. Lee, B. M. Jung, J. H. Byun, J. W. Yi, S. B. Lee, and B. S. Kim, Carbon, 65, 296 (2013).   DOI   ScienceOn
19 C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, Science, 312, 1191, (2006).   DOI   ScienceOn
20 D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price, and J. M. Tour, Nature, 458, 872 (2009).   DOI   ScienceOn
21 W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc., 80, 1339 (1958).   DOI
22 S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, Carbon, 45, 1558 (2007).   DOI   ScienceOn
23 G. Hu, C. Zhao, S. Zhang, M. Yang, and Z. Wang, Polymer, 47, 480 (2006).   DOI   ScienceOn
24 S. Jiang, Z. Gui, C. Bao, K. Dai, X. Wang, K. Zhou, Y. Shi, S. Lo, and Y. Hu, Chem. Eng. J., 226, 326 (2013).   DOI   ScienceOn
25 D. Li, M. B. Muller, S. Gilje, R. B. Kaner, and G. G. Wallace, Nat. Nanotechnol., 3, 101 (2008).   DOI   ScienceOn
26 Y. Zhu, M. D. Stoller, W. Cai, A. Velamakanni, R. D. Piner, D. Chen, and R. S. Ruoff, ACS Nano, 4, 1227 (2010).   DOI   ScienceOn
27 M. J. McAllister, J. L. Li, D. H. Adamson, H. C. Schniepp, A. A. Abdala, J. Liu, M. Herrera-Alonso, D. L. Milius, R. Car, R. K. Prud'homme, and I. A. Aksay, Chem. Mater., 19, 4396 (2007).   DOI   ScienceOn
28 K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, Nature, 457, 706 (2009).   DOI   ScienceOn