Browse > Article
http://dx.doi.org/10.7317/pk.2012.36.6.745

Influence of TiO2 Nanoparticle Filler on the Properties of PET and PLA Nanocomposites  

Farhoodi, Mehdi (Department of Food Science & Technology, Faculty of Agricultural Engineering, University of Tehran)
Dadashi, Saeed (Department of Food Science & Technology, Faculty of Agricultural Engineering, University of Tehran)
Mousavi, Seyed Mohammad Ali (Department of Food Science & Technology, Faculty of Agricultural Engineering, University of Tehran)
Sotudeh-Gharebagh, Rahmat (School of Chemical Engineering,College of Engineering, University of Tehran)
Emam-Djomeh, Zahra (Department of Food Science & Technology, Faculty of Agricultural Engineering, University of Tehran)
Oromiehie, Abdolrasul (Iran Polymer Institute)
Hemmati, Farkhondeh (Polymer Engineering and Color Technology Department, Amirkabir University of Technology)
Publication Information
Polymer(Korea) / v.36, no.6, 2012 , pp. 745-755 More about this Journal
Abstract
Two types of polymers were tested in this study; poly(ethylene terephthalate) (PET) as a synthetic example and poly(lactic acid) (PLA) as a natural polymer. DSC analyses showed that the use of nanofiller increased the degree of crystallinity ($X_c$) of both PET and PLA polymers, but the effect was more noticeable on PET nanocomposites. The crystallization of PLA and PET nanocomposites occurred at higher temperatures in comparison to neat polymers. According to dynamic mechanical-thermal analysis (DMTA), the damping factor of PET/$TiO_2$ nanoparticles decreased compared to the neat matrix, but for PLA nanocomposites the opposite trend was observed. Results of the mechanical test showed that for both PET and PLA nanocomposites, the most successful toughening effect was observed at 3 wt% loading of $TiO_2$ nanoparticles. SEM micrographs revealed uniform distribution of $TiO_2$ nanoparticles at 1 and 3 wt% loading levels. The results of WAXD spectra explained that the polymorphs of PLA and PET was not affected by $TiO_2$ nanoparticles. UV-visible spectra showed that $TiO_2$ nanocomposite films had high ultraviolet shielding compared to neat polymer, but there was significant reduction in transparency.
Keywords
nanocomposites; poly(lactic acid); poly(ethylene terephthalate); crystallization; mechanical properties;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. Xili, L. Xiuqian, S. Zhijie, and Zh. Yufeng, Eur. Polym. J., 44, 2476 (2008).   DOI   ScienceOn
2 N. Nakayama and T. Hayashi, Polym. Degrad. Stabil., 92, 1255 (2007).   DOI   ScienceOn
3 J. W. Rhim, S. I. Hong, and C. S. Ha, Tensile, LWT- Food Science and Technology, 42, 612 (2009).   DOI   ScienceOn
4 E. W. Fisher, H. J. Sterzel, and G. Wegner, Kolloid-Zeitschrift and Zeitschrift Fur Polymere, 251, 980 (1973).   DOI
5 Y. Y. Sun, Z. Q. Zhang, K. S. Moon, and C. P. Wong, J. Appl. Polym. Sci., 42, 3849 (2004).   DOI   ScienceOn
6 Y. C. Zhang, J. N. Huang, H. Y. Wu, and Y. P. Qiu, Mater. Sci., 613, 316 (2009).
7 M. H. Qu, Y. Z. Wang, C. Wang, X. G. Ge, D. Y. Wang, and Q. Zhou, Eur. Polym. J., 41, 2569 (2005).   DOI   ScienceOn
8 J. P. He, H. M. Li, X. Y. Wang, and Y. Gao, Eur. Polym. J., 42, 1128 (2006).   DOI   ScienceOn
9 T. Wan, L. Chen, Y. C. Chua, and X. Lu, J. Appl. Polym. Sci., 94, 1381 (2004).   DOI   ScienceOn
10 X. Liao, A. Nawaby, and H. E. Naguib, J. Appl. Polym. Sci., 124, 585 (2012).   DOI   ScienceOn
11 S. Pattanawanidchai, P. Saeoui, and C. Sirisinha, J. Appl. Polym. Sci., 96, 2218 (2005).   DOI   ScienceOn
12 P. C. Chiang, W. T. Whang, and M. H. Tsai, Thin Soild Films, 447, 359 (2004).   DOI   ScienceOn
13 M. H. Tsai, S. J. Liu, and P. C. Chiang, Thin Solid Films, 515, 1126 (2006).   DOI   ScienceOn
14 Y. J. Mergler and R. P. Schaake, J. Appl. Polym. Sci., 92, 2689 (2004).   DOI   ScienceOn
15 L. Sun, R. F. Gibson, F. Godaninejad, and J. Suhr, Compos. Sci. Technol., 69, 2392 (2009).   DOI   ScienceOn
16 C. Espejo, A. Arribas, F. Monzo, and P. P. Diez, J. Plast. Film Sheet., DOI: 10.1177/8756087912439058 (2012).   DOI   ScienceOn
17 M. S. Sunay, O. Pekcan, and S. Ugur, J. Nanomater., DOI: 10.1155/2012/524343 (2012).   DOI
18 J. Lunt, Polym. Degrad. Stabil., 59, 145 (1998).   DOI   ScienceOn
19 L. Yu, K. Dean, and L. Li, Progr. Polym. Sci., 31, 576 (2006).   DOI   ScienceOn
20 L. Yu and L. Chen, Polymeric materials from renewable resources. Biodegradable polymer blends and composites from renewable resources, John Wiley & Sons Inc., pp. 1-15 (2009).
21 R. P. Singh, J. K. Pandey, D. Rutot, Ph. Degee, and Ph. Dubois, Carbohyd. Res., 338, 1759 (2003).   DOI   ScienceOn
22 M. Rosoff, Nano-surface Chemistry, Marcel Dekker Inc., New York, 2002.
23 C. Saujanya and S. Radhakrishnan, Polymer, 42, 6723 (2001).   DOI   ScienceOn
24 D. H. Solomon and D. G. Hawthorne, Chemistry of Pigments and Fillers, John Wiley & Sons Inc., New York, 1983.
25 T. Yamada, L. Hao, K. Tada, S. Konagaya, and G. Li, Mater. Sci., 2, 154 (2006).
26 L. V. Todorov, C. I. Martins, and J. C. Viana, Solid State Phenomena, 151, 113 (2009).   DOI
27 L. V. Todorov and J. C. Viana, J. Appl. Polym. Sci., 106, 1659 (2007).   DOI   ScienceOn
28 L. Yonghui, Ch. Caihong, L. Jun, and S. S. Xiuzhi, Polymer, 52, 2367 (2011).   DOI   ScienceOn