• Title/Summary/Keyword: polymer matrix composite

Search Result 493, Processing Time 0.028 seconds

형상기억합금을 이용한 지능형 고분자 복합재료의 설계 (Design of an Intelligent Polymer-Matrix-Composite Using Shape Memory Alloy)

  • 정태헌
    • 대한기계학회논문집A
    • /
    • 제21권10호
    • /
    • pp.1609-1618
    • /
    • 1997
  • Thermo-mechanical behaviors of polymer matrix composite(PMC) with continuous TiNi fiber are studied using theoretical analysis with 1-D analytical model and numerical analysis with 2-D multi-fiber finite element(FE) model. It is found that both compressive stress in matrix and tensile stress in TiNi fiber are the source of strengthening mechanisms and thermo-mechanical coupling. Thermal expansion of continuous TiNi fiber reinforced PMC has been compared with various mechanical behaviors as a function of fiber volume fraction, degree of pre-strain and modulus ratio between TiNi fiber and polymer matrix. Based on the concept of so-called shape memory composite(SMC) with a permanent shape memory effect, the critical modulus ratio is determined to obtain a smart composite with no or minimum thermal deformation. The critical modulus ratio should be a major factor for design and manufacturing of SMC.

철도차량 복합소재의 인장파괴 특성분석 (Tensile Failure Characterization of Composites for Railway Vehicle)

  • 김정국;권성태;김정석;윤혁진
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.1231-1235
    • /
    • 2010
  • The tensile failure behavior of polymer matrix composite materials was investigated with the aid of a nondestructive evaluation (NDE) technique. The materials, E-glass fiber reinforced epoxy matrix composites, which are applicable to carbody materials in railway vehicles to reduce weight, were used for this investigation. In order to explain stress-strain behavior of polymer matrix composite sample, the infrared thermography technique was employed. A high-speed infrared (IR) camera was used for in-situ monitoring of progressive damages of polymer matrix composite samples during tensile testing. In this investigation, the IR thermography technique was used to facilitate a better understanding of damage evolution, fracture mechanism, and failure mode of polymer matrix composite materials during monotonic loadings.

  • PDF

폴리머-탄소나노튜브 복합체 에어로졸 입자의 생성 및 이를 이용한 하이브리드 복합체 박막 제조 (Synthesis of Polymer-Carbon Nanotubes Composite Nanoparticles and Their Applications into Forming Hybrid Composite Thin Films)

  • 김휘동;안지영;김수형
    • 한국입자에어로졸학회지
    • /
    • 제6권2호
    • /
    • pp.61-67
    • /
    • 2010
  • In this paper, we describe a new method to form polymer thin films, in which carbon nanotubes (CNTs) are homogeneously distributed so that they can strengthen the mechanical property of resulting polymer film. To do so, we first homogeneously mixed CNTs with polymer in a DMF solvent. With the assistance of ultrasonic nebulizer, the polymer/CNT solution was then aerosolized into micro-sized droplets and finally turned into solidified polymer/CNT composite particles by gas-phase drying process. As the results of SEM and TEM analysis, CNTs were found to be homogeneously immobilized in the polymer matrix particles due to rapid drying process in the gas phase. For comparison purpose, (i) the polymer/CNTs composite particles prepared by aerosol processing method and (ii) polymer/CNTs sheets prepared by simple solution-evaporation method were employed to form polymer/CNTs composite thin films using a hot press. As the result, the aerosol processing of composite particles was found to be a much more effective method to form homogeneously distributed-CNTs in the polymer matrix thin film.

Influence Study of Aluminum Dross on Polypropylene Matrix-Polymer Composite Material Properties

  • Kongchatree, Khanob;Yaemphuan, Paiboon;Kaewwichit, Jesada;Roybang, Waraporn;Kimapong, Kittipong
    • International Journal of Advanced Culture Technology
    • /
    • 제3권1호
    • /
    • pp.138-144
    • /
    • 2015
  • This paper is aimed to study the influence of aluminium dross from Thai aluminum casting factory on polypropylene matrix-polymer composite material properties. The summarized experimental results are as follows. An increase in the amount of aluminum dross polymer composite material affected to increase hardness, modulus of elasticity and abrasion resistance. However, the increase of the aluminum dross had no effects to change the yield strength and the melting temperature of the polymer composite material. The aluminum dross also affected to form the crystallinity at $117-122^{\circ}C$ and directly increased the rigid property of the composite materials. The microstructure examination revealed that the aluminum dross was located in a polymer matrix and affected to increase the dark colour of the polymer composite material.

재활용 가능한 고방열 고분자 복합소재 개발 (Recyclable Polymeric Composite with High Thermal Conductivity)

  • 신하은;김채빈;안석훈;김두헌;임종국;고문주
    • Composites Research
    • /
    • 제32권6호
    • /
    • pp.319-326
    • /
    • 2019
  • 본 연구에서는 재활용이 가능하며 열가소성 특성을 지닌 신규 고분자 수지를 개발하고 합성하였다. 이렇게 개발된 수지와 판상형 질화붕소(h-BN) 사이의 계면 친화성이 좋음을 계산과학을 통하여 확인하고 열압기(hot press)를 이용하여 복합소재를 제조하였다. 고분자 수지와 필러 사이의 계면 친화성과 함께 복합소재 제조시 발생되는 전단력(shear force) 만으로도 매우 높은 필러 정렬도를 지닌 복합소재를 제조할 수 있었고, 이러한 이유로 복합소재는 최대 13.8 W/mK의 높은 열전도도를 갖는 것을 확인하였다. 또한, 개발된 수지가 화학적으로 분해 가능한 장점을 이용하여 제조된 복합소재로부터 물리/화학적 변성 없이 필러를 회수할 수 있었고 이렇게 회수된 필러는 향후 다양한 신규 복합소재 제조에 재활용이 가능하다.

Effect of Nano-sized Silicas in HPDLC Based on PUA

  • Kim, Eun-Hee;Woo, Ju-Yeon;Kim, Byung-Kyu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2004년도 Asia Display / IMID 04
    • /
    • pp.1212-1215
    • /
    • 2004
  • Diffraction modes of holographic grating were fabricated with polyurethane acrylates(PUA). Two types of silica (AEROSIL 200 and AEROSIL R812) were added to reduce the shrinkage of polymer matrix. It was founded that shrinkage of PUA composite film was reduced with the addition of silica. HPDLC based PUA/silica composite also showed high diffraction efficiency. The morphology of the resultant gratings was analyzed by using scanning electron microscopy(SEM) and Tg of the polymer matrix by dynamic mechanical thermal analysis(DMTA).

  • PDF

Thermal Fatigue Behavior of 3D-Woven SiC/SiC Composite with Porous Matrix for Transpiration Cooling Passages

  • Hayashi, Toshimitsu;Wakayama, Shuichi
    • Advanced Composite Materials
    • /
    • 제18권1호
    • /
    • pp.61-75
    • /
    • 2009
  • The effect of porous matrix on thermal fatigue behavior of 3D-orthogonally woven SiC/SiC composite was evaluated in comparison with that having relatively dense matrix. The porous matrix yields open air passages through its thickness which can be utilized for transpiration cooling. On the other hand, the latter matrix is so dense that the air passages are sealed. A quantity of the matrix was varied by changing the number of repetition cycles of the polymer impregnation pyrolysis (PIP). Strength degradation of composites under thermal cycling conditions was evaluated by the $1200^{\circ}C$/RT thermal cycles with a combination of burner heating and air cooling for 200 cycles. It was found that the SiC/SiC composite with the porous matrix revealed little degradation in strength during the thermal cycles, while the other sample showed a 25% decrease in strength. Finally it was demonstrated that the porous structure in 3D-SiC/SiC composite improved the thermal fatigue durability.

Ablative Characteristics of Carbon/Carbon Composites by Liquid Rocket

  • Joo, Hyeok-Jong;Min, Kyung-Dae;Lee, Nam-Joo
    • Carbon letters
    • /
    • 제2권3_4호
    • /
    • pp.192-201
    • /
    • 2001
  • The Carbon/Carbon composite was prepared from 3D carbon fiber preform and coal tar pitch as matrix precursor. In order to evaluate of ablative characteristics of the composite, liquid rocket system was employed Kerosene and liquid oxygen was used as propellants, operating at a nominal chamber pressure of 330 psi and a nominal mixture ratio (O/F) of 2.0. The results of an experimental evaluation were that high density composite exhibited high, while low density composites showed low erosion resistance. The erosion rate against heat flux was highly depended on the density of the materials. The morphology of eroded fiber showed differently according to collision angle with heat flux on the composite. The granular matrix which derived from carbonization pressure of 900 bar was more resistance to heat flux than well-developed flow type matrix.

  • PDF