• Title/Summary/Keyword: polymer fibers

Search Result 577, Processing Time 0.022 seconds

A Study on the Hydrophobicity Modification and Physical Properties of Tencel Regenerated Fibers for Polypropylene Resin Composites (폴리프로필렌 수지 복합을 위한 텐셀 재생섬유의 소수화 표면개질 특성 연구)

  • Yoon, Songhyun;Kim, Mikyung;Lee, Eunsoo
    • Textile Coloration and Finishing
    • /
    • v.33 no.4
    • /
    • pp.258-268
    • /
    • 2021
  • This study conducted on the introduction of recycled cellulose fibers, which are widely used in the textile industry as eco-friendly biomass materials, into polypropylene resins, which are mainly used for interior and exterior materials such as door trims and console parts of automobiles. In general, cellulose fibers can affect mechanical properties and have a lightening effect when used as a reinforcing agent. However, since cellulose fibers have hydrophilic properties and have relatively low compatibility with industrial polymer resins, they are used in combination through fiber hydrophobic surface treatment. Therefore, through this study, the reforming reaction conditions optimized in terms of hydrophobicity and workability for cellulose fibers are studied. Furthermore, polypropylene containing surface-modified cellulose fibers was prepared to compare physical properties by fiber content and study optimized content.

Thermal Conductivity and Thermal Expansion Behavior of Pseudo-Unidirectional and 2-Directional Quasi-Carbon Fiber/Phenolic Composites

  • Cho, Donghwan;Choi, Yusong;Park, Jong Kyoo;Lee, Jinyong;Yoon, Byung Il;Lim, Yun Soo
    • Fibers and Polymers
    • /
    • v.5 no.1
    • /
    • pp.31-38
    • /
    • 2004
  • In the present paper, a variety of fiber reinforcements, for instance, stabilized OXI-PAN fibers, quasi-carbon fibers, commercial carbon fibers, and their woven fabric forms, have been utilized to fabricate pseudo-unidirectional (pseudo-UD) and 2-directional (2D) phenolic matrix composites using a compression molding method. Prior to fabricating quasi-carbon fiber/phenolic (QC/P) composites, stabilized OXI-PAN fibers and fabrics were heat-treated under low temperature carbonization processes to prepare quasi-carbon fibers and fabrics. The thermal conductivity and thermal expansion/contraction behavior of QC/P composites have been investigated and compared with those of carbon fiber/phenolic (C/P) and stabilized fiber/phenolic composites. Also, the chemical compositions of the fibers used have been characterized. The results suggest that use of proper quasi-carbonization process may control effectively not only the chemical compositions of resulting quasi-carbon fibers but also the thermal conductivity and thermal expansion behavior of quasi-carbon fibers/phenolic composites in the intermediate range between stabilized PAN fiber- and carbon fiber-reinforced phenolic composites.

Carbon Fibers (II): Recent Technical Trends and Market Prospects of Carbon Fibers

  • Seo, Min-Kang;Min, Byung-Gak;Park, Soo-Jin
    • Carbon letters
    • /
    • v.9 no.4
    • /
    • pp.324-339
    • /
    • 2008
  • The principal aims of the review paper are (1) to establish broad overview information, both qualitative and quantitative, relating to the world market for polyacrylonitrile (PAN) or pitch-based carbon fibers; and (2) to generate an effective analysis and break down of consumption by process route and eventual end-use. The review paper also designed specifically to provide subscribers with an accurate, independent, and realistic assessment of the current status and future perspective of the market for carbon fibers in the world. The world market for carbon fibers continues to grow rapidly, fuelled by new industrial end uses, such as sport and leisure goods, aerospace, automotive applications, civil engineering and infrastructure repair, and immerging applications in energy generation. Demands for properties of carbon fibers used in those applications include many things such as strength, toughness, fatigue property, corrosion resistance, heat resistance, etc., and these become to be higher level. On the other hand, demands for manufacturing technologies of carbon fibers become to be difficult with these demands for properties, and these are wide variety such as high efficiencies, high qualities, many functions, labor saving, and low cost. In this review paper, thus, the recent carbon fibers corresponded to these needs, and its latest manufacturing technologies as well as market prospects are described.

Research on Preparation of Sheath-Core Bicomponent Composite Ion Exchange Fibers and Absorption Properties to Metal Ion

  • Ding, Zhi-Jia;Qi, Lu;Ye, Jian-Zhong
    • Macromolecular Research
    • /
    • v.16 no.1
    • /
    • pp.21-30
    • /
    • 2008
  • Based on the sheath-core bicomponent composite fibers with modified polystyrene (PS) and the modified polypropylene (PP), composite fibers obtained were further cross-linked and sulphonated with chlorosulphonic acid to produce strong acidic cation ion exchange fibers. The structures of the fibers obtained were characterized using Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC) etc. The optimal technology of the fibers obtained is discussed. The static absorption capacity of the sheath-core bicomponent composite cation exchange fibers for $Zn^{2+}$, $Cu^{2+}$ was determined. The absorption kinetics and major factors affecting the absorption capacities of $Zn^{2+}$, $Cu^{2+}$ were studied, and its chemical stability and regenerating properties were probed. The results suggest that cation exchange fibers with better mechanical properties and higher exchange capability were obtained. Moreover, this type of ion exchange fiber has good absorption properties and working stability to various metal ions. Hence, they have higher practicability.

Effects of Methacrylamide Treatment on Silk Fibers II. Thermal Behavior of Methacrylamide-treated Silk Fibers (견섬유에 대한 메타크릴아미드의 처리효과 II. 메타크릴아미드 처리견의 열적 거동에 관하여)

  • 신봉섭;남중희
    • Journal of Sericultural and Entomological Science
    • /
    • v.34 no.1
    • /
    • pp.49-56
    • /
    • 1992
  • Treatment of vinyl monomers onto silk fiber modifies the properties of the original silk fiber considerably. This field has been the subject of investigation by many workers using chemical and radiation initiation. Many studies on the reaction conditions, polymerization mechanism, physical properties and practical performances of methacrylamide-treated silk fiber have been continued. However, the polymerization mechanism has not been clearly revealed yet and this remains ambiguously whether the grafting is formed on fiber or not. In general, it has been accepted that free radicals were formed and vinyl monomers were polymerized in silk fibroin by graft polymerization mechanism, while active sties were varied by the types of monomer and initiator as well as by the reaction conditions. On the other hand, there is another argument on polymerization mechanism, in which monomers are polymerized and impregnated in the internal side of the fiber by homopolymerization. Though a large number of analytical methods are used to examine the polymerization mechanism of methacrylamide-treated silk fiber, the results on the basis of thermal analysis are merely reported in this paper. In differential scanning calorimetry (DSC) analysis, the thermal decomposition behaviors of the methacrylamie-treated silk fibers were determined and compared to those of the controlled silk fibers. DSC curves obtained from the methacrylamide-treated silk fibers showed double peaks at around 290$^{\circ}C$ (A peak) and 320$^{\circ}C$ (B peak) which are attributed to the thermal decomposition of the methacrylamide polymer and silk fibroin fiber, respectively. The temperature of A and B peak shifted to higher value with the increase of add-on. Also, the moisture regain of the treated silk fibers increased with add-on.

  • PDF

Impact Behaviors of Ni-plated Carbon Fibers-reinforced Epoxy Matrix Composites (니켈도금된 탄소섬유 강화 에폭시 수지 복합재료의 충격 특성)

  • 박수진;김병주;이종문
    • Polymer(Korea)
    • /
    • v.27 no.1
    • /
    • pp.52-60
    • /
    • 2003
  • In this work, two types of Ni-plating, namely electrolytical and electroless Ni-platings on carbon fiber surfaces, were carried out to enhance the impact resistance of composites. And the comparison between electrolytical and electroless methods on their impact properties of composite system was studied. The surface properties of carbon fibers were characterized using XRD, SEM, and contact angle measurements. The impact behaviors were investigated using an Izod type impact tester. As experimental results, it was observed that electrolessly plated Ni layers had Ni-P alloys on carbon fiber surfaces as revealed by XRD, and electrolytically Ni-plated carbon fibers showed higher surface free energies than those of the electrolessly Ni-plated carbon fibers. In particular, the impact strengths of electrolessly Ni-plated carbon fibers-reinforced plastics were strongly increased. These results were probably due to the difference of wettabilities according to the different types of Ni-plating methods.

Effect of In Vitro Degradation on the Weight Loss and Tensile Strength of PLA/PEG Melt Blend Fiber (In Vitro 분해가 PLA/PEG 용융블렌드 섬유의 무게감량률 및 인장강도에 미치는 영향)

  • Yoon, Cheol-Soo;Ji, Dong-Sun
    • Polymer(Korea)
    • /
    • v.33 no.6
    • /
    • pp.581-587
    • /
    • 2009
  • PLA/PEG blend fibers composed of poly (lactic acid) (PLA) and poly (ethylene glycol) (PEG) were prepared via melt blending and spinning for bioabsorbable filament sutures. The blend fibers hydrolyzed with the immersion in a phosphate buffer solution at pH 7.4 and $37\;^{\circ}C$ for 1~8 weeks. The effects of blending time, blend composition, and hydrolysis time on the weight loss and tensile strength of the hydrolyzed blend fibers were investigated. After hydrolysis, the weight loss of the blend fibers increased with increasing PEG content, blending time, and hydrolysis time. The tensile strength and tensile modulus of the blend fibers decreased with increasing PEG content, blending time, and hydrolysis time. Therefore, it can be concluded that the weight loss of the PLA/PEG blend fibers was less than 0.9% even at hydrolysis time of 2 weeks and their strength retentions were over 90%.

Understanding and Research Trends in Liquid Crystal Elastomer Fibers (액정 엘라스토머 섬유의 이해와 연구동향)

  • Young Been Kim;Dae Seok Kim
    • Applied Chemistry for Engineering
    • /
    • v.34 no.4
    • /
    • pp.347-356
    • /
    • 2023
  • Liquid crystal elastomer (LCE) fibers have been widely applied in various fields, such as soft robots and biomimetic actuators, in a one-dimensional form. LCEs possess the characteristics of both fluidity and solid order, as well as the elasticity of rubber, and exhibit stimulus-response based on these properties. In particular, by programming the responsiveness to various stimuli such as heat, light, electric fields, and magnetic fields in terms of shape-changing, various movements such as lifting, twisting, and rotating can be realized with high degrees of freedom. Therefore, LCE fibers have the potential for application in various fields such as artificial muscles, soft robots, wearable technologies, and sensing technologies. The research on liquid crystal elastomer fibers is evaluated to have high applicability in various fields in the Fourth Industrial Revolution as a smart material that can include various functionalities beyond simple fibers. In this review, we introduce the structure and basic characteristics of liquid crystal elastomer fibers, the latest research trends on orientation-based fabrication methods, and various applications such as artificial muscles, smart fabrics, and soft robots.