• 제목/요약/키워드: polygonal function

검색결과 37건 처리시간 0.023초

CAD 수단을 이용한 벡터형 공간자료의 위상 검출과 격자도면화를 위한 유틸리티 개발 (Development of a CAD-based Utility for Topological Identification and Rasterized Mapping from Polygonal Vector Data)

  • 조동범;임재현
    • 한국조경학회지
    • /
    • 제27권4호
    • /
    • pp.137-142
    • /
    • 1999
  • The purpose of this study is to develope a CAD-based tool for rasterization of polygonal vector map in AutoCAD. To identity the layer property of polygonal entity with user-defined coordinates as topology, algorithm in processing entity data of selection set that intersected with scan line was used, and the layers were extracted sequentially by sorted intersecting points in data-list. In addition to the functions for querying and modifying topology, two options for mapping were set up to construct plan projection type and to change meshes' properties in existing DTM data. In case of plan projection type, user-defined cell size of 3DFACE mesh is available for more detailed edge, and topological draping on landform can be executed in case of referring DTM data as an AutoCAD's drawing. The concept of algorithm was simple and clear, but some unexpectable errors were found in detecting intersected coordinates that were AutoCAD's error, not the utility's. Also, the routines to check these errors were included in algorithmic processing. Developed utility named MESHMAP was written in entity data control functions of AutoLISP language and dialog control language(DCL) for the purpose of user-oriented interactive usage. MESHMAP was proved to be more effective in data handling and time comparing with GRIDMAP module in LANDCADD which has similar function.

  • PDF

Optimization of RC polygonal cross-sections under compression and biaxial bending with QPSO

  • de Oliveira, Lucas C.;de Almeida, Felipe S.;Gomes, Herbert M.
    • Computers and Concrete
    • /
    • 제30권2호
    • /
    • pp.127-141
    • /
    • 2022
  • In this paper, a numerical procedure is proposed for achieving the minimum cost design of reinforced concrete polygonal column cross-sections under compression and biaxial bending. A methodology is developed to integrate the metaheuristic algorithm Quantum Particle Swarm Optimization (QPSO) with an algorithm for the evaluation of the strength of reinforced concrete cross-sections under combined axial load and biaxial bending, according to the design criteria of Brazilian Standard ABNT NBR 6118:2014. The objective function formulation takes into account the costs of concrete, reinforcement, and formwork. The cross-section dimensions, the number and diameter of rebar and the concrete strength are taken as discrete design variables. This methodology is applied to polygonal cross-sections, such as rectangular sections, rectangular hollow sections, and L-shaped cross-sections. To evaluate the efficiency of the methodology, the optimal solutions obtained were compared to results reported by other authors using conventional methods or alternative optimization techniques. An additional study investigates the effect on final costs for an alternative parametrization of rebar positioning on the cross-section. The proposed optimization method proved to be efficient in the search for optimal solutions, presenting consistent results that confirm the importance of using optimization techniques in the design of reinforced concrete structures.

Frequency-constrained polygonal topology optimization of functionally graded systems subject to dependent-pressure loads

  • Thanh T. Banh;Joowon Kang;Soomi Shin;Lee Dongkyu
    • Steel and Composite Structures
    • /
    • 제51권4호
    • /
    • pp.363-375
    • /
    • 2024
  • Within the optimization field, addressing the intricate posed by fluidic pressure loads on functionally graded structures with frequency-related designs is a kind of complex design challenges. This paper thus introduces an innovative density-based topology optimization strategy for frequency-constraint functionally graded structures incorporating Darcy's law and a drainage term. It ensures consistent treatment of design-dependent fluidic pressure loads to frequency-related structures that dynamically adjust their direction and location throughout the design evolution. The porosity of each finite element, coupled with its drainage term, is intricately linked to its density variable through a Heaviside function, ensuring a seamless transition between solid and void phases. A design-specific pressure field is established by employing Darcy's law, and the associated partial differential equation is solved using finite element analysis. Subsequently, this pressure field is utilized to ascertain consistent nodal loads, enabling an efficient evaluation of load sensitivities through the adjoint-variable method. Moreover, this novel approach incorporates load-dependent structures, frequency constraints, functionally graded material models, and polygonal meshes, expanding its applicability and flexibility to a broader range of engineering scenarios. The proposed methodology's effectiveness and robustness are demonstrated through numerical examples, including fluidic pressure-loaded frequency-constraint structures undergoing small deformations, where compliance is minimized for structures optimized within specified resource constraints.

최적 근사 직교평면을 이용한 폴리곤 모델의 필렛 반지름 측정 (Radius Measurement of Fillet Regions of Polygonal Models by using Optimum Orthogonal Planes)

  • 한영현
    • 한국CDE학회논문집
    • /
    • 제10권2호
    • /
    • pp.114-120
    • /
    • 2005
  • This paper presents a novel method for radius measurement of fillet regions of polygonal models by using optimum onhogonal planes. The objective function for finding an optimum onhogonal plane is designed based on the orthogonality between the normal vectors of the faces in a filet region and the plane that is to be found. Direct search methods are employed to solve the defined optimization problem since no explicit derivatives of the object function can be calculated. Once an optimum orthogonal plane is obtained, the intersection between the onhogonal plane and the faces of interest is calculated, and necessary point data in the fillet region for measuring radii are extracted by some manipulation. Then, the radius of the fillet region in question is measured by least squares fitting of a circle to the extracted point data. The proposed radius measuring method could eliminate the burden of defining a plane for radius measurement, and automatically find a necessary optimum orthogonal plane. It has an advantage in that it can measure fillet radii without prior complicated segmentation of fillet regions and explicit information of neighboring surfaces. The proposed method is demonstrated trough some mea-surement examples.

급수 함수를 이용한 임의 형상 고정단 평판의 자유 진동 해석 (Free Vibration Analysis of Clamped Plates with Arbitrary Shapes Using Series Functions)

  • 강상욱
    • 한국소음진동공학회논문집
    • /
    • 제17권6호
    • /
    • pp.531-538
    • /
    • 2007
  • A new method for free nitration analysis using series functions is proposed to obtain the eigenvalues of arbitrarily shaped, polygonal plates with clamped edges. Since a general solution used in the method satisfies the equation of motion for the transverse vibration of a plate, the method offers very accurate eigenvalues, compared to FEM or BEM results. In addition, the method can minimize the amount of numerical calculation because it has the advantage of not needing to divide the plate of interest. Two case studies show that the proposed method is valid and accurate when the eigenvalues by the proposed method are compared to those by FEM (NASTRAN) or another analytical method.

Multi-material polygonal topology optimization for functionally graded isotropic and incompressible linear elastic structures

  • Thanh T. Banh;Joowon Kang;Soomi Shin;Dongkyu Lee
    • Steel and Composite Structures
    • /
    • 제51권3호
    • /
    • pp.261-270
    • /
    • 2024
  • This paper proposes an effective method for optimizing the structure of functionally graded isotropic and incompressible linear elastic materials. The main emphasis is on utilizing a specialized polytopal composite finite element (PCE) technique capable of handling a broad range of materials, addressing common volumetric locking issues found in nearly incompressible substances. Additionally, it employs a continuum model for bi-directional functionally graded (BFG) material properties, amalgamating these aspects into a unified property function. This study thus provides an innovative approach that tackles diverse material challenges, accommodating various elemental shapes like triangles, quadrilaterals, and polygons across compressible and nearly incompressible material properties. The paper thoroughly details the mathematical formulations for optimizing the topology of BFG structures with various materials. Finally, it showcases the effectiveness and efficiency of the proposed method through numerous numerical examples.

EVALUATION OF CONDITIONAL WIENER INTEGRALS USING PARK AND SKOUG'S FORMULA

  • Chang, Joo-Sup
    • 대한수학회보
    • /
    • 제36권3호
    • /
    • pp.441-450
    • /
    • 1999
  • In this paper we first evaluate the conditional Wiener integral of certain functionals using a Park and Skoug's formula. and we also evaluate the conditional wiener integral E(F│$X_\alpha$) of functional F on C[0, T] given by $F(x)=exp\{{\int_0}^T s^kx(s)ds\}$ for a general conditioning function $X_\alpha$ on C[0,T].

  • PDF

Maximal United Utility Degree Model for Fund Distributing in Higher School

  • Zhang, Xingfang;Meng, Guangwu
    • Industrial Engineering and Management Systems
    • /
    • 제12권1호
    • /
    • pp.36-40
    • /
    • 2013
  • The paper discusses the problem of how to allocate the fund to a large number of individuals in a higher school so as to bring a higher utility return based on the theory of uncertain set. Suppose that experts can assign each invested individual a corresponding nondecreasing membership function on a close interval I according to its actual level and developmental foreground. The membership degree at the fund $x{\in}I$ is called utility degree from fund x, and product (minimum) of utility degrees of distributed funds for all invested individuals is called united utility degree from the fund. Based on the above concepts, we present an uncertain optimization model, called Maximal United Utility Degree (or Maximal Membership Degree) model for fund distribution. Furthermore, we use nondecreasing polygonal functions defined on close intervals to structure a mathematical maximal united utility degree model. Finally, we design a genetic algorithm to solve these models.

A FINITE ELEMENT METHOD USING SINGULAR FUNCTIONS FOR HELMHOLTZ EQUATIONS: PART I

  • Kim, Seok-Chan;Pyo, Jae-Hong;Lee, Jong-Sik
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제12권1호
    • /
    • pp.13-23
    • /
    • 2008
  • In [7, 8], they proposed a new singular function(NSF) method to compute singular solutions of Poisson equations on a polygonal domain with re-entrant angles. Singularities are eliminated and only the regular part of the solution that is in $H^2$ is computed. The stress intensity factor and the solution can be computed as a post processing step. This method was extended to the interface problem and Poisson equations with the mixed boundary condition. In this paper, we give NSF method for the Helmholtz equations ${\Delta}u+Ku=f$ with homogeneous Dirichlet boundary condition. Examples with a singular point are given with numerical results.

  • PDF

A NOTE ON A FINITE ELEMENT METHOD DEALING WITH CORNER SINGULARITIES

  • Kim, Seok-Chan;Woo, Gyung-Soo;Park, Tae-Hoon
    • Journal of applied mathematics & informatics
    • /
    • 제7권2호
    • /
    • pp.493-506
    • /
    • 2000
  • Recently the first author and his coworker report a new finite element method for the Poisson equations with homogeneous Dirichlet boundary conditions on a polygonal domain with one re-entrant angle [7], They use the well-known fact that the solution of such problem has a singular representation, deduced a well-posed new variational problem for a regular part of solution and an extraction formula for the so-called stress intensity factor using tow cut-off functions. They use Fredholm alternative an Garding's inequality to establish the well-posedness of the variational problem and finite element approximation, so there is a maximum bound for mesh h theoretically. although the numerical experiments shows the convergence for every reasonable h with reasonable size y imposing a restriction to the support of the extra cut-off function without using Garding's inequality. We also give error analysis with similar results.