• 제목/요약/키워드: polycrystals

검색결과 68건 처리시간 0.024초

Microstructures and Mechanical Properties of Pressureless and Spark Plasma Sintered ZrO2(3 mol%Y2O3) Bodies

  • Shin, Na-Young;Han, Jae-Kil;Lee, Hae-Hyoung;Lee, Byong-Taek
    • 한국세라믹학회지
    • /
    • 제42권2호
    • /
    • pp.140-144
    • /
    • 2005
  • The microstructures and mechanical properties of Tetragonal Zirconia Polycrystals (TZP) sintered bodies, which made by pressureless and spark plasma sintering techniques, were investigated using XRD, SEM, and TEM techniques. In the spark plasma sintered samples, the TZP grains were equiaxed type including many sub-grain boundaries regardless of sintering conditions. The biaxial strength of TZP having an average of 80 nm grains in diameter was high in value with 1025 MPa, but fracture toughness showed a low value due to the absence of a fracture toughening mechanism such as transformation toughening. In the Pressureless Sintered (PLSed) samples, the grain size of TZP was strongly dependent on the sintering temperature; i.e., it gradually increased as the sintering temperature increased. The value of fracture toughness increased as the grain size increased by the stress-induced phase transformation and Borne crack deflection.

CeO2 안정화 정방정 Zirconia 다결정체(Ce-TZP)에 관한 연구(IV) : 12 Ce-TZP 세라믹스에 미치는 MgO 첨가 영향 (A Study on the Ceria Stabilized Tetragonal Zirconia Polycrystals (Ce-TZP) (IV) ; Effect of MgO Addition on 12 Ce-TZP Ceramics)

  • 김문일;박정현;강대석;이현권;문성환
    • 한국세라믹학회지
    • /
    • 제27권2호
    • /
    • pp.233-243
    • /
    • 1990
  • For theinvestigation of MgO addition effect on 12Ce-TZP ceramics, MgO-CeO2-ZrO2 ceramics was fabricated using commercial powders under sintering condition of 130$0^{\circ}C$-1$600^{\circ}C$ for 2hr. Fully tetragonal phase could be obtained by proper heat treatment and MgO addition amount. Minor cubic phase was appeared in relatively high MgO content composition at each sintering temperature. As alloying amount of MgO increased, tetragonal stability increased and grain size decreased. Grain size dependence on MgO content was verified by SEM observation of fractured surface. Surface bloating was observed from the 2 m/o to 6m/o in the temperature range of 150$0^{\circ}C$ to 1$600^{\circ}C$. In spite of very porous microstructure owing to surface bloating, 100% TZP could be maintained in 2.0m/o MgO composition by heat treatment of 150$0^{\circ}C$. This result indicated that MgO was more powerful stabilizer than CeO2. Mechanical proprties of MgO-CeO2-ZrO2 ceramics were consistent with the stability observation of tetragonal phase very well.

  • PDF

Mn-Zn 페라이트 다결정의 첨가물에 따른 초투자율의 변화 기구 (Origin of Variation of the Initial Permeability of Manganese-Zinc Ferrite Polycrystals with Additives)

  • 변순천;변태영;고경현;홍국선
    • 한국재료학회지
    • /
    • 제7권9호
    • /
    • pp.758-762
    • /
    • 1997
  • 52mol% Fe$_{2}$O$_{3}$, 26mol% MnO의 조성에서 calcium과 vanadium의 동시첨가에 의한 투자율의 변화원인을 살펴보았다. 초투자율은 첨가물의 농도가 커짐에 따라 감사하였으나 소결체의 밀도나 입자크기는 증가하였으므로 초투자율의 변화는 미세구조의 변화로는 설명되지 않았다. 전기비저항은 첨가물의 농도가 증가함에 따라 증가하였으며 이는 입계의 고저항층의 생성과 vanadium ion에 의한 Fe$^{2+}$이온의 산화로 설명되었다. 첨가물의 농도가 증가함에 따라, 초투자율의 제 2차 최대치가 나타나지 않는 것과 초투자율이 감소하는 것으로부터, 결정자기이방성 상수의 값은 음으로 커짐을 알 수 있었다. 투자육의 온도의존성과 비저항의 변화로부터, 첨가물의 농도에 따른 상온 초투자율의 감소는 Fe$^{2+}$ 이온 농도의 감소에 따른 결정자기이방성 상수의 증가에 의한 효과와 입계에 유리질이 생겨 자벽이 쉽게 이동하지 못하는 효과 때문인 것으로 판단되었다.

  • PDF

Effects of α-particle beam irradiation on superconducting properties of thin film MgB2 superconductors

  • Kim, Sangbum;Duong, Pham van;Ha, Donghyup;Oh, Young-Hoon;Kang, Won Nam;Hong, Seung Pyo;Kim, Ranyoung;Chai, Jong Seo
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제18권2호
    • /
    • pp.8-13
    • /
    • 2016
  • Superconducting properties of thin film MgB2 superconductors irradiated with 45 MeV ${\alpha}$-particle beam were studied. After the irradiation, enhancement of the critical current density and pinning force was observed, scaling close to strong pinning formula. Double logarithmic plots of the maximum pinning force density with irreversible magnetic field show a power law behavior close to carbon-doped MgB2 film or polycrystals. Variation of normalized pinning force density in the reduced magnetic field suggests scaling formulas for strong pinning mechanism like planar defects. We also observed a rapid decay of critical current density as the vortex lattice constant decreases, due to the strong interaction between vortices and increasing magnetic field.

High thermoelectric performance and low thermal conductivity in K-doped SnSe polycrystalline compounds

  • Lin, Chan-Chieh;Ginting, Dianta;Kim, Gareoung;Ahn, Kyunghan;Rhyee, Jong-Soo
    • Current Applied Physics
    • /
    • 제18권12호
    • /
    • pp.1534-1539
    • /
    • 2018
  • SnSe single crystal showed a high thermoelectric zT of 2.6 at 923 K mainly due to an extremely low thermal conductivity $0.23W\;m^{-1}\;K^{-1}$. It has anisotropic crystal structure resulting in deterioration of thermoelectric performance in polycrystalline SnSe, providing a low zT of 0.6 and 0.8 for Ag and Na-doped SnSe, respectively. Here, we presented the thermoelectric properties on the K-doped $K_xSn_{1-x}Se$ (x = 0, 0.1, 0.3, 0.5, 1.5, and 2.0%) polycrystals, synthesized by a high-temperature melting and hot-press sintering with annealing process. The K-doping in SnSe efficiently enhances the hole carrier concentration without significant degradation of carrier mobility. We find that there exist widespread Se-rich precipitates, inducing strong phonon scattering and thus resulting in a very low thermal conductivity. Due to low thermal conductivity and moderate power factor, the $K_{0.001}Sn_{0.999}Se$ sample shows an exceptionally high zT of 1.11 at 823 K which is significantly enhanced value in polycrystalline compounds.

Synchrotron X-Ray Diffraction Studies on Crystalline Domains in Urea-Formaldehyde Resins at Low Molar Ratio

  • WIBOWO, Eko Setio;PARK, Byung-Dae;CAUSIN, Valerio;HAHN, Dongyup
    • Journal of the Korean Wood Science and Technology
    • /
    • 제50권5호
    • /
    • pp.353-364
    • /
    • 2022
  • The crystalline domain of thermosetting urea-formaldehyde (UF) resins at low formaldehyde-to-urea (F/U) molar ratios (≤ 1.0) is known to be responsible for their poor performance as wood adhesives. Crystallization has been observed in 1.0 F/U UF resins during the addition reaction stage and at the end of the synthesis process (neat UF resins). The crystallinity and X-ray diffraction (XRD) spectra of the uncured neat UF resins, on the other hand, differed significantly from those of the cured neat UF resins, raising the possibility that their crystal structures were also different. This study demonstrates for the first time that the crystalline domains in 1.0 F/U UF resins generated from uncured and cured samples are identical. Despite having a lower crystallinity value, the synchrotron XRD patterns of purified neat UF resins were equivalent to the XRD patterns of cured neat UF resins. Transmission electron microscope images of the cured UF resins showed that the crystals were lamellar structures. This finding suggests that the crystal at low molar ratio UF resins are isotropic polycrystals with random orientation.

사출성형 및 열간가압 소결법으로 제작된 지르코니아 세라믹 임플란트의 소결물성 및 미세구조적 결함 (Sintered Properties and Microstructural Defects of Zirconia Ceramic Implant Fabricated by Injection Molding and Hot Isostatic Pressing (HIP))

  • 박현정;박정식;이종국
    • 열처리공학회지
    • /
    • 제36권4호
    • /
    • pp.215-222
    • /
    • 2023
  • 3Y-TZP (3 mol% yttria-stabilized tetragonal zirconia polycrystals, 3Y-TZP) ceramics are emerging as dental implant materials due to their superior optical and mechanical properties as well as excellent biophysical properties, in spite of low bioactivity. In this study, we investigated to sintered properties and microstructural defects of dental zirconia implants fabricated by ceramic injection molding and post-HIP (Hot isostatic pressing) processing and analyzed the processing parameters related with the obtainment of its high sinterd density. Sintered and microstructural parameters, i.e, apparent density, grain size and phase composition of zirconia implants fabricated by injection molding were dependent on the fixtute size and implant type. Maximum sintered density of 99.2% and minimum grain size of 0.3-0.4 ㎛ were obtained from large-scaled 2-body sample. In 1-body ceramic implant, high sintered density of 99.5% was obtained, but it had a little monoclinic phase and wide grain size distribution.

Mechanical Properties of B-Doped Ni3Al-Based Intermetallic Alloy

  • Oh, Chang-Sup;Han, Chang-Suk
    • 한국재료학회지
    • /
    • 제22권1호
    • /
    • pp.42-45
    • /
    • 2012
  • The mechanical behavior and microstructural evolution during high temperature tensile deformation of recrystallized Ni3Al polycrystals doped with boron were investigated as functions of initial grain size, tensile strain rate and temperature. In order to obtain more precise information on the deformation mechanism, tensile specimens were rapidly quenched immediately after deformation at a cooling rate of more than $2000Ks^{-1}$, and were then observed by transmission electron microscopy (TEM). Mechanical tests in the range of 923 K to 1012 K were carried out in a vacuum of less than $3{\times}10^{-4}$ Pa using an Instron-type machine with various but constant cross head speeds corresponding to the initial strain rates from $1.0{\times}10^{-4}$ to $3.1{\times}10^{-5}s^{-1}$. After heating to deformation temperature, the specimen was kept for more than 1.8 ks before testing. The following results were obtained: (1) Flow behavior was affected by initial strain size; with decreasing initial grain size, the level of a stress peak in the true stress-true strain curve decreased, the steady state region was enlarged and elongation increased. (2) On the basis of TEM observation of rapidly quenched specimens, it was confirmed that dynamic recrystallization certainly occurred on deformation of fine-grained ($3.3{\mu}m$) and intermediate-grained ($5.0{\mu}m$) specimens at an initial strain rate of $3.1{\times}10^{-5}s^{-1}$ and at 973 K. (3) There were some dislocation-free grains among the new recrystallized grains. The obtained results suggest that both dynamic recrystallization and grain boundary sliding are operative during high temperature deformation.

세리아 안정화 지르코니아의 제조 및 특성(I) : CeO2첨가량 변화에 따른 Ce-TZP의 기계적 특성 (Preparation and Characterization of Ceria Stabilized Tetragonal Zirconia Polycrystals(I) : Effect of CeO2 Contents on the Mechanical Properties of Ce-TZP)

  • 정승화;강종봉
    • 한국재료학회지
    • /
    • 제20권7호
    • /
    • pp.379-384
    • /
    • 2010
  • The usual ceramic process of mixing and milling in state of oxides $ZrO_2$ and $CeO_2$ was adopted in this study in a wet process to manufacture Ce-TZP. $CeO_2$-$ZrO_2$ ceramics containing 8~20 mol% $CeO_2$ were made by heat treatment at $1250\sim1500^{\circ}C$ for 5hr. The maximum dispersion point of every slurry manufactured with a mixture of $ZrO_2$ and $CeO_2$ was neat at pH10. A stable slurry with average particle size of 90 nm can be manufactured when it is dispersed with the use of ammonia water and polycarboxylic acid ammonium. The sintered Ce-TZP ceramics manufactured with the addition of $CeO_2$ in a concentration of less than 10 mol% progressed to the fracture of the specimen due to the existence of a monoclinic phase of more than 30% at room temperature. More than 99% of the tetragonal phase was created for the sintered body with the addition of $CeO_2$ beyond 18 mol%, but the degradation of the mechanical properties on the entire specimen was brought about due to the $CeO_2$ existing in a percentage above 3%. Consequently, the optimal Ce-TZP level combined in the oxide state was identified to be 16 mol% of $CeO_2$ contents.

Effects of Yttria and Calcia Co-Doping on the Electrical Conductivity of Zirconia Ceramics

  • Lee, Jong-Sook;Shin, Dong-Kyu;Choi, Byung-Yun;Jeon, Jung-Kwang;Jin, Sung-Hwan;Jung, Kwon-Hee;An, Pyung-An;Song, Sun-Ju
    • 한국세라믹학회지
    • /
    • 제44권12호
    • /
    • pp.655-659
    • /
    • 2007
  • Zirconia polycrystals co-doped with x mol% CaO and (10-x) mol% $Y_2O_3$ were prepared by solid state reaction method. The compositions were chosen for nominally the same oxygen vacancy concentration of 5 mol%. X-ray diffraction patterns indicated the formation of cubic zirconia by heat treatment at $1600^{\circ}C$. Impedance spectroscopy was applied to deconvolute the bulk and grain boundary response. Electrical conductivity was measured using the complex impedance technique from 516 to 874 K in air. Maximum conductivity was exhibited by the composition with equal amounts of CaO and $Y_2O_3$, which may be ascribed to the smaller degree of defect-interactions in that composition due to the competition of different ordering schemes between the two systems. When compared to the composition containing $Y_2O_3$ only, co-doping of CaO increases the grain boundary resistance considerably. The activation energy of grain and grain boundary conductivity was 1.1 eV and 1.2 eV, respectively, with no appreciable dependence on dopant compositions.