DOI QR코드

DOI QR Code

Sintered Properties and Microstructural Defects of Zirconia Ceramic Implant Fabricated by Injection Molding and Hot Isostatic Pressing (HIP)

사출성형 및 열간가압 소결법으로 제작된 지르코니아 세라믹 임플란트의 소결물성 및 미세구조적 결함

  • Received : 2023.06.12
  • Accepted : 2023.07.10
  • Published : 2023.07.30

Abstract

3Y-TZP (3 mol% yttria-stabilized tetragonal zirconia polycrystals, 3Y-TZP) ceramics are emerging as dental implant materials due to their superior optical and mechanical properties as well as excellent biophysical properties, in spite of low bioactivity. In this study, we investigated to sintered properties and microstructural defects of dental zirconia implants fabricated by ceramic injection molding and post-HIP (Hot isostatic pressing) processing and analyzed the processing parameters related with the obtainment of its high sinterd density. Sintered and microstructural parameters, i.e, apparent density, grain size and phase composition of zirconia implants fabricated by injection molding were dependent on the fixtute size and implant type. Maximum sintered density of 99.2% and minimum grain size of 0.3-0.4 ㎛ were obtained from large-scaled 2-body sample. In 1-body ceramic implant, high sintered density of 99.5% was obtained, but it had a little monoclinic phase and wide grain size distribution.

Keywords

Acknowledgement

본 성과물은 중소벤처기업부에서 지원하는 2022년도 산학연 플랫폼 협력기술개발사업(과제번호 S3312766)의 연구수행으로 인한 결과물임을 밝힙니다.

References

  1. I. Denry and J. R. Kelly: Dent. Mater., 24 (2008) 299. 
  2. R. B. Osman and M. V. Swain: Materials (Basel), 8 (2015) 932. 
  3. Z. Ozkurt and E. Kazazoglu: J. Oral. Implantol., 37 (2011) 367. 
  4. H. Ananth, V. Kundapur, H. S. Mohammed, M. Anand, G. S. Amarnath, and S. Mankar: Int. J. Biomed. SCi., 11 (2015) 113. 
  5. M. Hisbergues, S. Vendeville, and P. Vendeville: J. Biomed. Mater. Res. B. Appl. Biomater., 88 (2009) 519. 
  6. M. Dehestani, L. Ilver, and E. Adolfsson: J. Biomed. Mater. Res. B. Appl. Biomater., 100 B (2012) 832. 
  7. F. H. Schunemann, M. E. Galarraga-Vinueza, R. Magini, M. Fredel, F. Silva, J. C. M. Souza, Y. Zhang, and B. Henriques: Mater. Sci. Eng. C. Mater. Biol. Appl., 98 (2019) 1294. 
  8. D. W. Suh, Y. K. Kim, and Y. J. Yi: J. Korean. Acad. prosthodont., 57 (2019) 88. 
  9. G. Soon, B. Pingguan-Murphy, K. W. Lai, and S. A. Akbar: Ceram. Int., 42 (2016) 12543. 
  10. I. Sailer, D. Karasan, A. Todorovic, M. Ligoutsikou, and B. E. Pjetursson: Periodon., 88 (2022) 130. 
  11. F. Zhang, M. Monzavi, M. Li, S. Cokic, A. Manesh, H. Nowzari, J. Vleugels, and B. V. Meerbeek: Dent. Mater., 38 (2022) 1633. 
  12. A. R. Terrizzi, M. Fersini, V. Contaldi, S. K. Padmanabhan, M. A. Einarsrud, and A. Licciulli: Ceram. Inter., 48 (2022) 31211. 
  13. S. Ban: Materials 14 (2021) 4879. 
  14. C. Sanon, J. Chevalier, T. Douillard, M. CattaniLorente, S. S. Scherrer, and L. Gremillard: Dent. Mater., 31 (2015) 15. 
  15. M. Dechamps and S. Pickering: J. Am. Ceram. Soc., 78 (1995) 2873. 
  16. J. Grech and E. Antune: J. Mater. Res. Tech., 8 (2019) 4956. 
  17. K. Furuya, S. Takemoto, S. Yamashita, H. Sekine, Y. Yajima, and M. Yoshinari: Dent. Mater. J., 39 (2020) 577. 
  18. T. J. Lucas, N. C. Lawson, G. M. Janowski, and J. O. Burgess: Dent Mater., 31 (2015) 1487.