• Title/Summary/Keyword: polyaniline film

Search Result 63, Processing Time 0.022 seconds

Fabrication of a Thin and Flexible Polyaniline Electrode for High-performance Planar Supercapacitors (고성능 평면 슈퍼커패시터를 위한 얇고 유연한 폴리아닐린 전극 제작)

  • Son, Seon Gyu;Kim, Seo Jin;Shin, Junho;Ryu, Taegon;Jeong, Jae-Min;Choi, Bong Gill
    • Applied Chemistry for Engineering
    • /
    • v.32 no.4
    • /
    • pp.403-408
    • /
    • 2021
  • In this study, a thin and flexible planar supercapacitor (PSC) was fabricated by coating polyaniline (PANI) on a screen-printed carbon electrode. Carbon ink was coated onto the flexible polyethylene terephthalate using a screen-printing method; subsequently, a thin film of PANI was coated onto the carbon surface using a dilute polymerization method. A thin flexible PANI electrode in an interdigitated structure was assembled with a polymer gel electrolyte that resulted in planar-shaped supercapacitor (PSC) devices. The as-obtained PANI/PSC was very thin and flexible, exhibiting a high areal capacitance of 409 µF/cm was obtained at a rate of 10 mV/s. This capacitance retains 46% of its original value at 500 mV/s. The flexible PANI/PSC exhibited an excellent capacitance retention of 82% even under bent states of 180° and 100 repetitive bent cycles.

Preparation and Properties of Waterborne-Polyurethane Coating Materials Containing Conductive Polyaniline

  • Kim, Han-Do;Kwon, Ji-Yun;Kim, Eun-Young
    • Macromolecular Research
    • /
    • v.12 no.3
    • /
    • pp.303-310
    • /
    • 2004
  • We have prepared an aqueous dispersion of poly(aniline-dodecyl benzene sulfonic acid complex) (PANI-DC) that has an intrinsic viscosity (〔η〕) near 1.3 dL/g using aniline as a monomer, dodecyl benzene sulfonic acid(DBSA) as a dopant/emulsifier, and ammonium peroxodisulfate(APS) as an oxidant. We found that the electrical conductivity of a PANI-DC pellet was 0.7 S/cm. A waterborne-polyurethane (WBPU) dispersion, obtained from isophorone diisocyanate/polytetramethylene oxide glycol/dimethylol propionic acid/ethylene diamine/triethylene amine, was used as a matrix polymer. We prepared blend films of WBPU/PANI-DC with variable weight ratios (from 99/1 to 66/34) by solution blending/casting and investigated the effects that the PANI-DC content has on the mechanical and dynamic mechanical properties, hardness, electrical conductivity, and antistaticity of these films. The tensile strength, percentage of elongation, and hardness of WBPU/PANI-DC blend films all decreased markedly upon increasing the PANI-DC content. The antistatic half-life time ($\tau$$\sub$$\frac{1}{2}$/) of pure WBPU film was about 110 s, but we found that those of WBPU/ultrasound-treated PANI-DC blend films decreased exponentially from 1.2 s to 0.1 s to almost 0 s upon increasing the PANI-DC content from 1 wt% to 15 wt% to > 15 wt%, respectively.

Gas Separation through Conductive Polymer Membranes. I. - Effect of Dopants on Properties and Gas Separation of Polyanilines - (전도성고분자의 기체투과특성 I. -도판트에 따른 물성 및 기체투과특성의 변화-)

  • 이연근;하성룡;이영무;홍성연
    • Membrane Journal
    • /
    • v.6 no.4
    • /
    • pp.258-264
    • /
    • 1996
  • Polyanilines were prepared by the oxidative polymerization in the presence of ammonium persulfate as an oxidant. After dehydration, a doping was carried out by mixing the polymer solution with dopants and immersing into aqueous dopant solutions. Using various riopants, the d-spacing of polyanilines can be controlled from $3.72{\AA}$ to $4.844{\AA}$. The d-spacing of polyanilines with polymeric or bulky dopants was larger than that of as-cast polyaniline. The characterization of the physical properties were confirmed by Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), dielectric analyzer (DEA) etc. Annealed polyaniline membrane exhibited the oxygen permeability of 0.072 barrer and the oxygen selectivity to nitrogen was 6.87. For the gas separation of polyanilines with polymeric or bulky riopants, the permeability increased while the selectivity detereased. Permeability can be readily controlled by the use of bulky dopants.

  • PDF

The fabrication and sensing characteristics of conducting polymer sensors for Measurement of VOCs (Volatile organic compounds) gas (휘발성 유기 화합물 가스 측정을 위한 전도성 고분자 센서의 제조(製造) 및 감응(感應) 특성(特性))

  • Paik, J.H.;Hwang, H.R.;Roh, J.G.;Huh, J.S.;Lee, D.D.;Lim, J.O.;Byun, H.G.
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.125-133
    • /
    • 2001
  • Conducting polymer sensors show high sensitivity when exposed to volatile organic compounds gases at room temperature. The 8 sensor array using by polypyrrole and polyaniline has been fabricated by chemical polymerization for measuring sensing characteristics of VOCs gases. Conducting polymer was polymerized by using distilled pyrrole, aniline as a monomer and ammonium persulfate (APS) as an oxidant and dodecylbenzene sulfonic acid (DBSA) as a dopant. Dedoped film was synthesized by reverse voltage and redoped film was synthesized by using 1-octanesulfonic acid sodium salt as another dopant in electrochemical cell. The sensitivity and reversibility were influenced by doping, dedoping, redoping and thickness for the polypyrrole and polyaniline. We investigated the relation between the structure of conducting polymer and sensitivity of these sensors through the analysis of scanning electron microscope (SEM), scanning probe microscope (SPM) and $\alpha$-step.

  • PDF

Fabrication and Electromechanical Behaviors of a SWNT/PANi Composite Film Actuator (탄소나노튜브/도전성폴리머 복합재 엑츄에이터의 제조 및 특성실험)

  • Zhang, Shuai;Kim, Cheol
    • Composites Research
    • /
    • v.19 no.5
    • /
    • pp.7-11
    • /
    • 2006
  • The improved SWNTs/PANi composite actuator films applicable to an artificial muscle were fabricated successfully using a new process of manufacture that consists of 90% pure single-walled carbon nanotubes (SWNT) and chemical polymerization. PANi is electrically conducting polyaniline polymer. The conductivities of the composite SWNTs/PANi film-type actuators and the pure PANi films fabricated were measured as 56.15 S/cm and 17.38 S/cm, respectively, by the 4-prove method. The conductivity of the composite actuator is 3.2 times higher than the pure PANi film. The fabricated composite actuator showed higher conductivity than any other similar ones. The quality of samples was investigated by an electron scanning microscope (SEM). To measure the actuating strains, a specially designed beam balance apparatus was developed and strains of the composite actuators was measured by a laser displacement sensor subjected to electric currents. During the operation, the sample was soaked in the $NaNO_3$ solution and the sine-wave voltage in the range of $+1V{\sim}-1V$ was applied. The length of the composite actuator changed from $l_0=12.690$ mm to $l_1=12.733$ so that the change of length was l=0.043 mm and the strain was 0.34 %. This is a very high strain for this kind of a composite actuator. Other result reported by Tahhan showed 0.23 % strain, so that the present result is improved by 48%.

Volatile Organic Gas Recognition Using Conducting Polymer Sensor array (전도성 고분자 센서 어레이를 이용한 휘발성 유기 화합물 가스 인식)

  • Lee, Kyung-Mun;Joo, Byung-Su;Yu, Joon-Boo;Hwang, Ha-Ryong;Lee, Byung-Soo;Lee, Duk-Dong;Byun, Hyung-Gi;Huh, Jeung-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.286-293
    • /
    • 2002
  • We fabricated gas recognition system using conducting polymer sensor array for recognizing and analyzing VOCs(Volatile Organic Compounds) gases. The polypyrrole and polyaniline thin film sensors which were made by chemical polymerization were employed to detect VOCs. The multi-dimensional sensor signals obtained from the sensor array were analyzed using PCA(principal component analysis) technique and RBF(radial basis function) Network. Throughout the experimental trails, we confirmed that RBF Network is effective than PCA technique in identifying VOCs.

Influence of Polymer Morphology and Dispersibility on Mechanical Properties and Electrical Conductivity of Solution-cast PANI-DBSA/HIPS Blends (용액 캐스팅으로 제조한 PANI-DBSA/HIPS 블렌드에서 분산성 및 모폴로지가 기계적 특성과 전기전도도에 미치는 영향)

  • Lee, Jong-Hyeok;Choi, Sun-Woong;Kim, Eun-Ok
    • Polymer(Korea)
    • /
    • v.35 no.6
    • /
    • pp.543-547
    • /
    • 2011
  • A study has been done to enhance the mechanical properties and processability of electrically conductive polyaniline(PANI) without the polymer's structural alternation. Functionalized acid doped PANI (PANI-DBSA) was prepared by an emulsion polymerization, and dodecylbenzenesulfonic acid (DBSA) played both roles of surfactant and dopant. Also, PANI-DBSA was solution cast blended with high impact polystyrene (HIPS) to produce PANI-DBSA/HIPS blend film. The structure and electrical properties of the conducting polymer blends were observed through UV-vis and FTIR/ATR spectroscopy. A study of the blend was carried by focusing on observation of mechanical and electrical properties based on dispersibility and changes in polymer morphology. The conductivity of the blends was increased by increasing the content of PANI-DBSA, and the sudden increase of conductivity to $3.5{\times}10^{-4}$ S/cm was observed even under a low content of 9 wt%. There was a strong association of continuous network formation with percolation and conductivity in the conducting polymer blends.

A Study on the Electromagnetic shielding Effectiveness Using Conductive Polymers (전도성 고분자를 이용한 전자파 차폐효과의 연구)

  • 하남규;이보현;김태영;김종은;서광석
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.3
    • /
    • pp.207-214
    • /
    • 2001
  • The conductive polymers, polyaniline (PANI) emeralidin base and 3,4-polyethylene dioxythiophene(PEDOT) were synthesized and coated on the PET film dealt with acryl type primer to study the electromagnetic shielding effectiveness. When both PANI and PEDOT were coated on the PET film dealt with acryl type priemer, their surface properties such as he adhesive increased. For PANI, when blended with the binder such as PMMA, it adhesive and surface hardness increased, too. The visible light transmittance decreased, while the electromagnetic shielding effectiveness increased, when coated thickness of PANI and PEDOT increased. For PANI, the electromagnetic shielding effectiveness increased as its surface resistance decreased. For PANI, when the surface resistance was 140 Ω/$\square$, the shielding effectiveness was found to be 11 dB in the far field, and 13 dB in the near field at 1 GHz. For PEDOT, when the surface resistance was 200 Ω/$\square$, the shielding effectiveness was found to be 3 dB in the far field, and 7dB in the near field.

  • PDF

PREPARATION OF ELECTROCONDUCTIVE POLY(THIOPHENE-CO-PYRROLYL UNDECANOIC ACID) LANGMUIR-bLODGETT FILMS (Poly(thiophene-co-pyrrolyl undecanoic acid) LB film 제조 및 성질)

  • 장지임;박연흠;김건형;조원호
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10b
    • /
    • pp.159-160
    • /
    • 2003
  • 금속과 유사한 전도성을 가진 공액이중결합의 전기전도성 고분자를 사용한 Langmuir-Blodett (LB) 막의 제조에 관한 연구는 그 범위가 넓으며, 지금까지 많은 연구 논문들이 보고되고 있다[1]. 특히 전도성이 뛰어난 polyaniline, polypyrrole, polythiophene은 전도성과 stability가 우수하여 전기 전도성 LB 막에 대한 연구들이 많이 진행되어 왔다[2]. 본 연구에서는 이와 같은 전기전도성 유기물질을 사용한 전도성 LB막이 수직방향에 비해 수평방향의 전기전도도가 크다는 전기적 장점을 이용하여 전도성 LB막을 제조하기 위해 새로운 전도성 고분자를 합성하여 전기 전도성을 띄는 LB 막을 제조하였다[3,4]. (중략)

  • PDF

The Electromagnetic Shielding Effectiveness Using Conducting Polymers (전도성 고분자를 이용한 전자파 차폐효과)

  • 하남규;김종은;서광석
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.306-309
    • /
    • 2000
  • The conductive polymers, polyaniline (PANI) emeraldine base and 3, 4-polyethylene dioxythiophene (PEDOT) were synthesized and coated on the PET film primer-dealt with acryl type to find out the electromagnetic shielding effectiveness. When conductive polymer such as PANI and PEDOT is used, if the thickness of coating increases then the electromagnetic shielding effectiveness increases, too, but the visible light transmittance decreases. For PANI, when its conductivity increased, its electromagnetic shielding effectiveness increased, too. For PANI, if the surface resistance is about 140 $\Omega$/$\square$, the shielding effectiveness is about 11 dB in the far field, and about 13 dB in the near field at 1 GHz. For PEDOT, when the surface resistance is about 200 $\Omega$/$\square$, the shielding effectiveness is about 3 dB.

  • PDF