Browse > Article

Influence of Polymer Morphology and Dispersibility on Mechanical Properties and Electrical Conductivity of Solution-cast PANI-DBSA/HIPS Blends  

Lee, Jong-Hyeok (Department of Chemistry, The University of Suwon)
Choi, Sun-Woong (Department of Polymer Science & Engineering, Hannam University)
Kim, Eun-Ok (Department of Chemistry, The University of Suwon)
Publication Information
Polymer(Korea) / v.35, no.6, 2011 , pp. 543-547 More about this Journal
Abstract
A study has been done to enhance the mechanical properties and processability of electrically conductive polyaniline(PANI) without the polymer's structural alternation. Functionalized acid doped PANI (PANI-DBSA) was prepared by an emulsion polymerization, and dodecylbenzenesulfonic acid (DBSA) played both roles of surfactant and dopant. Also, PANI-DBSA was solution cast blended with high impact polystyrene (HIPS) to produce PANI-DBSA/HIPS blend film. The structure and electrical properties of the conducting polymer blends were observed through UV-vis and FTIR/ATR spectroscopy. A study of the blend was carried by focusing on observation of mechanical and electrical properties based on dispersibility and changes in polymer morphology. The conductivity of the blends was increased by increasing the content of PANI-DBSA, and the sudden increase of conductivity to $3.5{\times}10^{-4}$ S/cm was observed even under a low content of 9 wt%. There was a strong association of continuous network formation with percolation and conductivity in the conducting polymer blends.
Keywords
PANI-DBSA/HIPS blend; emulsion polymerization; dispersibility; morphology; electrical conductivity;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 T. A. Skotheim, Handbook of Conducting Polymers, Marcel Dekker, New York, 1986.
2 S. K. Singh, R. K. Gupta, and R. A. Singh, Synth. Met., 159, 2478 (2009).   DOI   ScienceOn
3 C. C. Liu, B. Y. Lu, J. Yan, J. K. Xu, R. R. Yue, Z. J. Zhu, S. Y. Zhou, X. J. Hu, Z. Zhang, and P. Chen, Synth. Met., 160, 2481 (2009).
4 H. W. Rhee and C. Y. Kim, Polym. Sci. Tech., 2, 149 (1991).
5 R. K. Paul, C. K. S. Pillai, and B. R. Mattes, Synth. Met., 27, 114 (2000).
6 M. T. Nguyen, P. Kasai, J. L. Miller, and A. F. Diaz, Macromolecules, 27, 3625 (1994).   DOI
7 J. C. Chiang and A. G. MacDiarmid, Synth. Met., 13, 193 (1986).   DOI   ScienceOn
8 C. L. Gettinger, A. J. Heeger, D. J. Pine, and Y. Cao, Synth. Met., 74, 81 (1995).   DOI   ScienceOn
9 D. C. Trivedi and S. K. Dhawan, Synth. Met., 58, 309 (1993).   DOI   ScienceOn
10 B. Sanjai, A. Raghunathan, T. S. Natarajan, G. Rangarajan, S. Thomas, P. V. Prabhakaran, and S. Venkatachalam, Phys. Rev. B, 55, 10734 (1997).   DOI   ScienceOn
11 M. G. Han, S. K. Cho, S. G. Oh, and S. S. Im, Synth. Met., 126, 53 (2002).   DOI   ScienceOn
12 S. Ray, A. J. Easteal, R. P. Cooney, and N R. Edmonds, Mat. Chem. Phys., 113, 829 (2009).   DOI   ScienceOn
13 E. Ruckenstein and S. Yang, Synth. Met., 53, 283 (1993).   DOI   ScienceOn
14 Y. P. Mamunya, Y. V. Muzychenko, P. Pissis, E. V. Lebedev, and M. Shut, Polym. Eng. Sci., 42, 90 (2002).   DOI   ScienceOn
15 Y. Xia, J. M. Wiesinger, and A. G. MacDiarmid, Chem. Mater., 7, 443 (1995).   DOI   ScienceOn
16 B. J. Kim, S. G. Oh, M. G. Han, and S. S. Im, Synth. Met., 122, 297 (2001).   DOI   ScienceOn
17 R. M. Scarisbrick, J. Phys. D, 6, 2098 (1973).   DOI   ScienceOn
18 G. Dagli, A. S. Argon, and R. E. Cohen, Polymer, 36, 2173 (1995).   DOI   ScienceOn
19 M. Kryszewski, Synth. Met., 45, 289 (1991).   DOI   ScienceOn
20 X. H. Yin, K. Yoshino, H. Yamamoto, T. Watanuki, I. Isa, S. Nakagawa, and M. Adachi, J. Appl. Phys., 33, 3597 (1994).   DOI
21 E. Ruckenstein and Y. Sun, Synth. Met., 74, 107 (1995).   DOI   ScienceOn
22 S. Bhadra, D. Khastgir, N. K. Singha, and J. H. Lee, Prog. Polym. Sci., 34, 783 (2009).   DOI   ScienceOn
23 A. G. MacDiarmid, Y. Min, J. M. Wiesinger, E. J. Oh, E. M. Scherr, and A. J. Epstein, Synth. Met., 55, 753 (1993).   DOI   ScienceOn
24 W. R. Salaneck, B. Liedberg, O. Inganäs, R. Erlandsson, I. Lundström, A. G. MacDiarmid, M. Halpern, and N. L. D. Somasiri, Mol. Cryst. Liq. Cryst., 121, 191 (1985).   DOI
25 V. E. Bondarenko, T. S. Zhuravleva, O. N. Efimov, and G. V. Nikolaeva, Synth. Met., 102, 1228 (1999).   DOI   ScienceOn
26 M. Zilberman, G. I. Titelman, A. Siegmann, Y. Haba, M. Narkis, and D. Alperstein, J. Appl. Polym. Sci., 66, 243 (1997).   DOI   ScienceOn
27 J. Tang, X. Jing, B. Wang, and F. Wang, Synth. Met., 24, 231 (1988).   DOI   ScienceOn
28 D. Maccines and L. B. Funt, Synth. Met., 25, 235 (1988).   DOI   ScienceOn
29 M. Morita and I. Hashida, J. Appl. Polym. Sci., 41, 1073 (1990).   DOI
30 E. Dallas, J. Mater. Sci., 27, 453 (1992).
31 P. Dutta, S. Biswas, M. Ghosh, and S. K. De, Synth. Met., 122, 455 (2001).   DOI   ScienceOn
32 Y. Cao, P. Smith, and A. J. Heeger, Synth. Met., 48, 91 (1992).   DOI   ScienceOn
33 Y. Cao, P. Smith, and A. J. Heeger, Synth. Met., 57, 3514 (1993).   DOI   ScienceOn
34 C. Y. Yang, Y. Cao, P. Smith, and A. J. Heeger, Synth. Met., 53, 293 (1993).   DOI   ScienceOn
35 W. J. Kim, T. Y. Kim, J. W. Ko, Y. S. Kim, C. M. Park, and K. S. Suh, Trans. KIEE, 53C, 305 (2004).
36 H. G. Jeoung, D. W. Chung, K. H. Ahn, S. J. Lee, and S. J. Lee, Polymer(Korea), 25, 744 (2001).
37 R. M. Scarisbrick, J. Phys. D, 66 2098 (1973).
38 Y. Roichman, M. S. Silverstein, A. Siegmann, and M. Narkis, J. Macromol. Sci. Phys., B38, 145 (1999).
39 X. H. Yin, K. Yoshino, H. Yamamoto, T. Watanuki, I. Isa, S. Nakagawa, and M. Adachi, J. Appl. Phys., 33, 3597 (1994).   DOI