• Title/Summary/Keyword: polyamideimide

Search Result 13, Processing Time 0.018 seconds

Morphology and Tensile Properties of Polyimide/Polyamideimide Composites from Different Polyimide Precursors (Polyimide 전구체에 따른 Polyimide/Ppolyamideimide 복합체의 형태학 및 인장 특성)

  • 김진봉;최윤희;임병탁;박준상
    • Polymer(Korea)
    • /
    • v.25 no.2
    • /
    • pp.160-167
    • /
    • 2001
  • The various compositions of polyimide (PI)/polyamideimide (PAI) composites were prepared by heat treatment of the solvent cast PI precursors/PAI blends. The optical micrographs showed that a good compatibility was observed between poly(amic acid) (PAA) and PAI, but in the case of PAME/PAI mixtures, a phase separation apparently occurred due to the absence of ionic and/or H-bonding forces. Regardless of PI precursors, the similar tensile properties were observed. The tensile modulus of the composites were higher than that of the neat polyimide. The X-ray diffraction patterns of the composites showed that the chain rearrangement of PI was increased due to the plasticizing effect of PAI, which has lower glass transition temperature than that of PI, during thermal imidization process.

  • PDF

Effect of Conductor Radius of Polyesterimide- Polyamideimide Enameled Round Wire on Insulation Breakdown Voltage and Insulation Lifetime

  • Park, Jae-Jun;Shin, Seong-Sik;Lee, Jae-Young;Han, Se-Won;Kang, Dong-Pil
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.3
    • /
    • pp.146-150
    • /
    • 2015
  • Insulation breakdown voltage and insulation lifetime were investigated in straight lines or twisted pairs with polyesterimide-polyamideimide enameled round wires (EI/AIW ). The enamel thickness was 50 μm and the conducting copper radius was 0.50, 0.75, 1.09, and 1.50 mm, respectively. There were many air gaps in a twisted pair therefore, when voltage was applied to the twisted pair, enamel erosion took place in the air gap area because of partial discharge according to Paschen's law. Insulation breakdown voltage and insulation lifetime were highest in the sample of 0.75 mm conductor radius, which was higher than those values for 0.50 mm or 1.09 and 1.55 mm.

Effect of Winding Coil Diameter on AC Insulation Breakdown Voltage of Polyamideimide/Nanosilica Wire

  • Park, Jae-Jun;Woo, Myung-Ha;Lee, Jae-Young;Han, Se-Won
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.4
    • /
    • pp.231-234
    • /
    • 2016
  • The AC insulation breakdown voltage was investigated for seven types of winding coils made of polyamideimide (PAI), flexural PAI (nanosilica 5 wt%) and anti-corona PAI (nanosilica 15 wt%) wires with various winding coil diameters of φ5, φ15 and φ25 mm. The winding coil was made of enameled wire with an enamel thickness of 30~50 μm, and the rectangular copper wire had a thickness of 0.77~ to 0.83 mm and width of 1.17~ to 1.23 mm, respectively. The insulation breakdown voltages of the original PAI coils with diameters of φ5, φ15 and φ25 mm were 7.30, 6.58, and 5.95 kV, respectively, and those values decreased as the winding coil diameter increased, regardless of the wire types.

Improvement of Toughness of Tetrafunctional Epoxy (TGDDM) Resin Using Polyamideimide (PAI) Resin (폴리아미드이미드 수지를 이용한 4관능성 에폭시 수지의 강인화 향상)

  • 박수진;허건영;이재락;홍영택;최길영
    • Polymer(Korea)
    • /
    • v.26 no.5
    • /
    • pp.599-606
    • /
    • 2002
  • In this study, 4,4'-tetraglycidyl diaminodiphenyl methane (TGDDM)/polyamideimide (PAI) blends were cured using diaminodiphenyl sulfone (DDS). And the effect of addition of different PAI contents to neat TGDDM was investigated in the thermal, mechanical, and morphological properties of the blends. The cure behavior and thermal stability of the cured specimens were monitored by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), respectively. Also, the critical stress intensity factor (K$\_$IC/) was measured in UTM, and the phase separation behavior and final morphology of TGDDM/PAI blends were examined in scanning electron microscopy(SEM). As a result, the cure temperature and cure activation energy (E$\_$a/) were decreased with increasing the PAI content. The decreasing of cure temperature and cure activation energy were probably due to the presence of secondary amine group of PAI backbone used as co-initiator. But, the decomposition activation energy (E$\_$t/) and K$\_$IC/ value were increased up to 5. 10 phr of PAI content, respectively and they were decreased above the PAI contents. These results were explained on the basis of chain scission reaction by etherification. And morphology of blends observed from SEM was confirmed in co-continuous structures.

Effect of Ambient Temperature on Insulation Lifetime of Winding Coil Prepared with Polyamideimide/Nanosilica Enamelled Wire

  • Park, Jae-Jun;Woo, Myung-Ha;Lee, Jae-Young;Hwang, Don-Ha
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.5
    • /
    • pp.297-301
    • /
    • 2016
  • The effects of ambient temperature and diameter on the insulation lifetime of winding coils prepared with polyamideimide (PAI), flexural PAI (nanosilica 5 wt%) and anti-corona PAI (nanosilica 15 wt%) wires were investigated. The winding coils were made of enameled wire with enamel thickness of 30~50 μm. The thickness and width of the rectangular copper wires were 0.77~0.83 mm and 1.17~1.23 mm, respectively. The insulation breakdown lifetime decreased with increasing ambient temperature regardless of wire type and winding coil diameter under an inverter surge of 1.5 kV/20 kHz. The insulation breakdown lifetimes of φ5 mm winding coils at 150, 200, and 250℃ were 11.38, 5.19, and 4.22 min respectively, and those of φ10 mm winding coils at 150, 200, and 250℃ were 11.32, 5.79, and 4.57min respectively. The winding coil diameter had little effect on the insulation lifetime.

Insulation Breakdown Properties of AC and DC according to Curvature Variation of PAI Organic/Inorganic Hybrid Coils (PAI 유/무기 하이브리드코일의 곡률변화에 따른 AC 및 DC 절연파괴 특성)

  • Park, Jae-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.10
    • /
    • pp.1721-1726
    • /
    • 2016
  • 4-types of coils were prepared by coating with polyamideimide (PAI) organic/inorganic hybrid. One type was made with original PAI vanish and the other 3-types were made of double layers, that was to say, high flexural PAI layer and high anti-corona PAI/nanosilica (15 wt%) layer. Drying temperature (T/D) were $220^{\circ}C$, $240^{\circ}C$, and $260^{\circ}C$, respectively and rectangular type coil for high-voltage rotating machine was used. DC and AC electrical breakdown tests were carried out in order to study the insulation properties according to T/D temperature and coil curvature (5, 15, and $25mm{\Phi}$). As the curvature increased, electrical breakdown voltage decreased and as T/D temperature decreased, electrical breakdown voltage increased.

Insulation Life Estimation for Magnet Wire Under Inverter Surge and Temperature Stress (인버터 서지와 온도 스트레스 하에서 Magnet Wire 절연 수명평가)

  • Park, Jae-Jun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.10
    • /
    • pp.641-646
    • /
    • 2016
  • Coil specimen was prepared by coating a copper wire with two varnish thin layers: the first was polyamideimide (PAI)/nanosilica (5 wt%) varnish and the second was anti-corona PAI/nanosilica (15 wt%) varnish. Insulation breakdown voltage was investigated under inverter surge condition at $20^{\circ}C$, $70^{\circ}C$, $100^{\circ}C$, $150^{\circ}C$, $200^{\circ}C$, $250^{\circ}C$, respectively. The insulation lifetime of the two layered coil was tens of times longer than that of original PAI coil. And the insulation lifetime decreased with increasing ambient temperature because there was weak binding strength between copper and varnish layer.

Insulation Breakdown Frequency Properties of PAI Enamelled Rectangular Coils According to Thermal Deterioration Temperature Variation (열적 열화 온도 변화에 따른 PAI 에나멜 각형코일의 절연 파괴 주파수 특성)

  • Park, Jae-Jun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.12
    • /
    • pp.829-834
    • /
    • 2016
  • Coil specimens were prepared by continuous coating on a copper wire with flexible PAI (polyamideimide) and PAI/nanosilica (5 wt%) varnish and thermally aged at 150, 200 and $250^{\circ}C$ for 5, 10 and 15 days, respectively. AC insulation breakdown voltage was investigated under inverter surge condition at 60 Hz and 1,000 Hz and insulation breakdown voltage decreased with increasing aging temperature and aging time at each 60 and 1,000 Hz.

The Effect of Coating Material of Copper-wire RF Coil on the Signal-to-Noise Ratio in MR Images (RF코일로 사용된 구리선 코팅재질이 자기공명영상에서의 신호대잡음비에 미치는 영향)

  • Lee, Hyeon-Seung;Moon, Hye-Young;Chang, Yong-Min;Hong, Kwan-Soo
    • Investigative Magnetic Resonance Imaging
    • /
    • v.13 no.2
    • /
    • pp.171-176
    • /
    • 2009
  • Purpose : To investigate the effect of coating material in RF coil, which is one of main parts in MRI machine, on the Q-factor and SNR(signal-to-noise ratio) in MR images. Materials and Methods : RF coils with inner diameter of 1.7 mm were made by using copper wires coated with polyester, polyurethane, polyimide, polyamideimide, and polyester-imide, and by using copper wires in which coating materials had been removed. Q-factors of the RF coils were measured by network analyzer, and SNR values in the spin-echo MR images obtained by 600 MHz (14.1 T, Bruker DMX600) micro-imaging system for the coated and uncoated cases. Results : The measured SNRs were almost same for the RF coils with coat-removed copper wires, however SNRs and Q-factors were different for the coated cases depending on the coating material. They were maximized in the polyurethane-coated case in which the SNR was > 30% greater than polyester-coated case. Conclusion : We made solenoid-type RF coils which were easily used for MR micro-imaging in Bruker MRI probe. There was a significant coating-material dependence in the measured Q values and SNRs for the home-made RF coils. The study demonstrated that the choice of coating material of RF coil may be a critical factor in the MRI sensitivity based on SNR value.

  • PDF

Effect of Ambient Temperature on Insulation Lifetime of Inverter Surge Resistant Enameled Wire Prepared with Organic/Inorganic Hybrid Nanocomposite

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.3
    • /
    • pp.163-167
    • /
    • 2016
  • Inverter surge resistant enameled wire was prepared with an organic/inorganic hybrid nanocomposite, and the effect of ambient temperature on the insulation lifetime of the enameled wire in the form of twisted pair was studied by a withstanding voltage tester. The organic polymer was Polyesterimide-polyamideimide (EI/AI) and the inorganic material was a Nano-sized silica (average particle size : 15 nm). The enamel thickness was 50 μm and the ambient temperature was 100, 150, 200, and 250, respectively. Transmission electron microscopy (TEM) observation showed that Nano-sized Silica were evenly dispersed in EI/AI. There were many air gaps in a twisted pair, therefore, when voltage was applied to the twisted pair, enamel erosion took place in the air gap area because of partial discharge accordi, ng to Paschen’s law. As ambient temperature increased, insulation lifetime decreased according to Arrhenius relationship, which was explained by the increasing mobility of polymer chains in EI or AI. And insulation breakdown voltage value at 10 kHz was 1,864.5 sec (31.1 min), which is 1.9 times higher than at 20 kHz, 981.6 sec (16.4 min).