• Title/Summary/Keyword: polyamide 6

Search Result 146, Processing Time 0.025 seconds

A Study on the Life Characteristics of Lightweight Bearings (경량 베어링 수명 특성에 관한 연구)

  • Lee, Choong-Sung;Park, Jong-Won;Lim, Sin-Yeol;Kang, Bo-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_2
    • /
    • pp.819-825
    • /
    • 2021
  • In the industry, the use of lightweight bearings is increasing to minimize motor power loss, and in particular, the application of next-generation systems such as robots and drones is increasing. Bearing manufacturers are producing lightweight bearings by changing the bearing material, but related researches is insufficient. In this paper, life test and structural analysis were performed for lightweight bearings, and shape parameters and scale parameters were derived based on the life test results. It was confirmed that the shape parameter was 2.52 and the scale parameter was 164 hours. As a result of calculating the dynamic load rating based on the B10 life, it was confirmed that the dynamic load rating of the lightweight bearing was 7% compared to the formula suggested by ISO 281. The reason is that the material of the retainer, which is a major failure part, is a polyamide 66 series that reacts sensitively to heat, so It is judged to show a lot of difference from the ISO 281 calculation formula.

Influence of Processing on Morphology, Electrical Conductivity and Flexural Properties of Exfoliated Graphite Nanoplatelets-Polyamide Nanocomposites

  • Liu, Wanjun;Do, In-Hwan;Fukushima, Hiroyuki;Drzal, Lawrence T.
    • Carbon letters
    • /
    • v.11 no.4
    • /
    • pp.279-284
    • /
    • 2010
  • Graphene is one of the most promising materials for many applications. It can be used in a variety of applications not only as a reinforcement material for polymer to obtain a combination of desirable mechanical, electrical, thermal, and barrier properties in the resulting nanocomposite but also as a component in energy storage, fuel cells, solar cells, sensors, and batteries. Recent research at Michigan State University has shown that it is possible to exfoliate natural graphite into graphite nanoplatelets composed entirely of stacks of graphene. The size of the platelets can be controlled from less than 10 nm in thickness and diameters of any size from sub-micron to 15 microns or greater. In this study we have investigated the influence of melt compounding processing on the physical properties of a polyamide 6 (PA6) nanocomposite reinforced with exfoliated graphite nanoplatelets (xGnP). The morphology, electrical conductivity, and mechanical properties of xGnP-PA6 nanocomposite were characterized with electrical microscopy, X-ray diffraction, AC impedance, and mechanical properties. It was found that counter rotation (CNR) twins crew processed xGnP/PA6 nanocomposite had similar mechanical properties with co-rotation (CoR) twin screw processed or with CoR conducted with a screw design modified for nanoparticles (MCoR). Microscopy showed that the CNR processed nanocomposite had better xGnP dispersion than the (CoR) twin screw processed and modified screw (MCoR) processed ones. It was also found that the CNR processed nanocomposite at a given xGnP content showed the lowest graphite X-ray diffraction peak at $26.5^{\circ}$ indicating better xGnP dispersion in the nanocomposite. In addition, it was also found that the electrical conductivity of the CNR processed 12 wt.% xGnP-PA6 nanocomposite is more than ten times higher than the CoR and MCoR processed ones. These results indicate that better dispersion of an xGnP-PA6 nanocomposite is attainable in CNR twins crew processing than conventional CoR processing.

Synthesis of Monomers for Polyamide-type TPEs from Oleic Acid (천연 올레인산 기반 폴리아미드계 TPEs 단량체 합성)

  • Koh, Moo-Hyun;Kim, Hyun Su;Kim, Hyeonjeong;Shin, Nara;Yoo, Dongwon;Kim, Young Gyu
    • Elastomers and Composites
    • /
    • v.48 no.1
    • /
    • pp.24-29
    • /
    • 2013
  • We have developed the synthetic processes for the monomers of polyamide-type TPEs (thermoplastic elastomers, TPAEs) obtained from vegetable oil. TPAEs have several superior physical properties to those of thermoplastic elastomers (TPEs). From the common starting material, oleic acid, which is commonly found in various vegetable oils, we have synthesized three ${\omega}$-amino acid monomers ($C_9$, $C_{10}$ and $C_{11}$ ${\omega}$-amino acid) and three ${\alpha}$, ${\omega}$-dicarboxylic acids($C_9$, $C_{10}$ and $C_{11}$ ${\alpha}$, ${\omega}$-dicarboxylic acid) for TPAEs in good yields.

Functional Improvement of Hot Melt Adhesive Using Polyamide Type Resin - (III) The Effect of Wax and Filler - (폴리아미드계 수지를 이용한 핫멜트 접착제의 기능 향상 - (III) 왁스와 충전제의 영향 -)

  • Chung, Kyung-Ho;Han, Kyung-A;Cho, Wook-Sang
    • Applied Chemistry for Engineering
    • /
    • v.16 no.6
    • /
    • pp.827-833
    • /
    • 2005
  • This study focused on the establishment of optimum formulation of polyamide based hot melt adhesive through adhesive synthesis, study of physical property, and adhesion study. In the previous study, the optimum formulation of base resins (CM831, 843P) and tackifying resin (terpene resin) was determined. The weight ratio of CM831, 843P, and terpene resin was 75, 25, and 10, respectively. Based on the optimum formulation, the effect of wax and filler addition was examined in this study. According to the results, the maximum adhesion strength with the steel could be obtained by the addition of 5 wt% of polyethylene wax although the melt viscosity of adhesive decreased continuously with the addition of wax. In the case of filler, the optimum adhesion property could be achieved by the addition of 10 wt% of talc. However, the addition of filler caused little increase of melt viscosity of adhesive.

A Study on the Mechanical Properties and Performance Prediction Simulation of PA6/GF Composite Materials with Injection Molding Pressure (사출 성형공정 압력에 따른 PA6/GF 복합재료의 물리적 특성 및 성능 예측 시뮬레이션에 관한 연구)

  • Yu, Seong-hun;Kim, Min-seong;Yoon, Hyun-sung;Park, Jong-soo;Jeon, Seong-min;Sim, Jee-hyun
    • Textile Coloration and Finishing
    • /
    • v.34 no.1
    • /
    • pp.46-57
    • /
    • 2022
  • In this study, the relationship between fiber orientation and mechanical properties with the injection pressure of polyamide-6/glass fiber composite materials manufactured by the injection molding process was investigated. Also, an actual experimental data and finite element model-based simulation data were analyzed. Specimens were manufactured through the injection molding process setting the injection pressure differently to 700, 800, 900, and 1000 bar, respectively. A morphological analysis and orientation of the PA6/GF composite material were observed using Optical microscope. Through tensile and flexural strength tests, the mechanical properties of the PA6/GF composite materials with the injection pressure were studied. As a result, it was confirmed that the mechanical properties were the superior under the injection pressure of 900 bar molding conditions. In addition, the mechanical properties of the actually manufactured specimen (PA6/GF) and virtual engineering S/W((Digimat, Abaqus) were used to compare and analyze the analysis results for the mechanical properties, and based on the reliable DB, the physical properties of the PA6/GF composite characteristics were studied.

Investigation of Surface Morphology for Nylon 4,6 Thin Film by Molecular Layer Deposition

  • Gwon, Deok-Hyeon;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.419-419
    • /
    • 2012
  • We fabricated the Polyamide 4,6 (PA46) thin film using Adipoyl chloride and 1,4-butadiamine. PA46 film was grown at $70^{\circ}C$ by Molecular Layer Deposition (MLD) method. MLD is sequential and self-terminating fabrication method for organic thin film. The growth rate of PA46 is $3.5{\acute{\AA}}$ cycle. The thickness of PA46 film was measured by Ellipsometer. Surface morphology of this film was investigated by Atomic Force Microscopy (AFM) and roughness is directly proportional to number of growing cycles.

  • PDF

Mechanical and thermal properties of polyamide versus reinforced PMMA denture base materials

  • Soygun, Koray;Bolayir, Giray;Boztug, Ali
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.2
    • /
    • pp.153-160
    • /
    • 2013
  • PURPOSE. This in vitro study intended to investigate the mechanical and thermal characteristics of Valplast, and of polymethyl methacrylate denture base resin in which different esthetic fibers (E-glass, nylon 6 or nylon 6.6) were added. MATERIALS AND METHODS. Five groups were formed: control (PMMA), PMMA-E glass, PMMA-nylon 6, PMMA-nylon 6.6 and Valplast resin. For the transverse strength test the specimens were prepared in accordance with ANSI/ADA specification No.12, and for the impact test ASTM D-256 standard were used. With the intent to evaluate the properties of transverse strength, the three-point bending (n=7) test instrument (Lloyd NK5, Lloyd Instruments Ltd, Fareham Hampshire, UK) was used at 5 mm/min. A Dynatup 9250 HV (Instron, UK) device was employed for the impact strength (n=7). All of the resin samples were tested by using thermo-mechanical analysis (Shimadzu TMA 50, Shimadzu, Japan). The data were analyzed by Kruskal-Wallis and Tukey tests for pairwise comparisons of the groups at the 0.05 level of significance. RESULTS. In all mechanical tests, the highest values were observed in Valplast group (transverse strength: $117.22{\pm}37.80$ MPa, maximum deflection: $27.55{\pm}1.48$ mm, impact strength: $0.76{\pm}0.03$ kN). Upon examining the thermo-mechanical analysis data, it was seen that the E value of the control sample was 8.08 MPa, higher than that of the all other samples. CONCLUSION. Although Valplast denture material has good mechanical strength, its elastic modulus is not high enough to meet the standard of PMMA materials.

Syntheses, Solubilities and Thermal Properties of Polyamide-imides containing Bis(p-carbonylphenyl)diphenylsilane units (Bis(p-carbonylphenyl)diphenylsilane 단위를 함유한 폴리아미드-이미드의 합성과 용해도 및 열적성질에 관한 연구)

  • Un Sik Kim;Young Kiel Sung;Yoon Koo Sik
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.590-600
    • /
    • 1987
  • Silicone-containing polyamide-imides were prepared from bis(p-chlorocarbonylphenyl)diphenylsilane (BCCDPS), pyromellitic dianhydride(PMDA) and diamines. The thermal characteristics of the above polymers had been carefully studied using a thermogravimetric analyzer. The thermal stability of polymer was decreased with increasing contents of bis(p-carbonylphenyl)diphenylsilane units(BCDPS). The effect of diamine on thermal stability of polymer led benzidine > m-phenylenediamine> 4,4'-diaminodiphenyl ether > 4,4'-diaminodiphenyl sulfone. The activation energy of degradation of polymer obtained by Friedman method increased as the contents of BCDPS in the polymer decreased. The degradation temperature of polymers generally increased as the activation energy increased. The solubility of polymer increased as the content of BCDPS increased except polymers prepared with benzidine.

  • PDF

A Study on Electric Properties of Polyamide Film due to Temperature Change

  • Lee, Sung Ill
    • Elastomers and Composites
    • /
    • v.54 no.1
    • /
    • pp.1-6
    • /
    • 2019
  • In this study, we measured the leakage current at $30{\sim}80^{\circ}C$ and $90{\sim}170^{\circ}C$ under a voltage of 200~980 V applied to samples (ordinary temperature) and polyamide film specimens degraded at $170^{\circ}C$ for 20 minute respectively. After the specimen was degraded at $130^{\circ}C$ and $50^{\circ}C$, a voltage of 200 to 800 V was applied for 10 to 60 minutes. The measurement of the leakage current resulted in the following conclusions. In the case of using Al and Cu as the main electrode, it was confirmed that the leakage current also increased in high temperatures as the voltage increased. Regardless of the type of main electrode, when the temperature was constant at $130^{\circ}C$ and $50^{\circ}C$, the leakage current increased as the voltage increased, and gradually decreased with time. As a result of the FTIR measurement, the main absorption of the infrared absorption spectrum was C=O at about $1650cm^{-1}$ and N-H diagonal vibration occurred at around $1550cm^{-1}$. There was no change in the material, so no effect of temperature was observed. By the results of SEM measurements, as the temperature of degradation increases, cracks in the specimen disappear. This may be because the amide bond (-CO-NH-) is absorbed by the material.

A Study on Mechanical Characteristics Analysamsarais of PA/GF Composite Materials for Cowl Cross Beam (카울크로스빔용 PA/GF복합재료의 기계적 특성 분석에 관한 연구)

  • Hwan-kuk Kim;Jong-vin Park;Ji-hoon Lee;Heon-kyu Jeong
    • Textile Coloration and Finishing
    • /
    • v.35 no.1
    • /
    • pp.29-41
    • /
    • 2023
  • This study is about a hybrid lightweight cowl crossbeam structure with high rigidity and ability to absorb collision energy to support the cockpit module, which is an automobile interior part, and to absorb energy during a collision. It is a manufacturing process in which composite material bracket parts are inserted and injected into existing steel bars. When considering the mounting condition of a vehicle, the optimization of the fastening condition of the two parts and the mechanical properties of the composite material is acting as an important factor. Therefore, this study is about a composite material having a volume content of Polyamide(PA) and Glass Fiber used as a composite material for a composite material-metal hybrid cowl crossbeam. As a result of analyzing the physical properties of the PA/GF composite material, experimental data were obtained that can further enhance tensile strength and flexural strength by using PA66 rather than PA6 used as a base material for the composite material. And based on this, it contributed to securing the advantage of lightening by using high-stiffness composite material by improving the high disadvantage of the weight of the cowl crossbeam material, which was made only of existing metal materials.