• Title/Summary/Keyword: poly-methyl methacrylate

Search Result 339, Processing Time 0.029 seconds

Reinforcing Polymer Nanofibers Through Incorporation of Multi-walled Carbon Nanotubes (전기방사법을 이용한 고분자 나노섬유의 합성과 다중벽 탄소나노튜브의 혼합을 통한 물리적 강도 향상)

  • Lee, Mi-Hyun;Song, Woo-Seok;Kim, Yoo-Seok;Jang, Sung-Won;Choi, Won-Chel;Park, Chong-Yun
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.1
    • /
    • pp.41-47
    • /
    • 2012
  • Multi-walled carbon nanotubes (MWCNTs) incorporated polyacrylonitrile (PAN) and poly (methyl methacrylate) (PMMA) nanofibers were synthesized using electronspinning method. Effects of polymer concentration and applied voltage on the synthesis of PAN and PMMA nanofibers were systematically investigated. The structural characterization of PAN/MWCNTs and PMMA/MWCNTs composited nanofibers synthesized as a function of the MWCNTs concentration was performed by scanning electron microscopy and transmission electron microscopy. 5 wt% MWCNTs incorporated PAN and PMMA electrospun nanofiber exhibit best strength and stiffness.

Graphene Attached on Microsphere Surface for Thermally Conductive Composite Material (그래핀이 표면에 분포된 미립자를 이용한 열전도 복합재료의 개발)

  • Choi, Jae-Yong;Lee, Joo Hyuk;Kim, Mi Ri;Lee, Ki Seok;Cho, Kuk Young
    • Clean Technology
    • /
    • v.19 no.3
    • /
    • pp.243-248
    • /
    • 2013
  • Thermally conductive materials are widely used in various applications where effective heat dissipation is required. Graphene shows high potential for various uses owing to high electrical conductivity, good mechanical strength, and high thermal conductivity. Generally previous works used organic solvents are generally used for the dispersion of graphene in fabrication procedure. In order to achieve clean fabrication it is required to use water media. In this study, we fabricated graphene attached poly(methyl methacrylate) (PMMA) microsphere via microfluidic method. With the aid of surfactant, graphene was well dispersed in water which was used as continuous flow. Thermal conductivity was improved with the small amount of graphene addition and this indicate potential use of this system for thermally conductive composite material.

Mechanical Properties of Denture Base Resin through Controlling of Particle Size and Molecular Weight of PMMA (폴리(메틸 메타아크릴레이트) 입자 크기 및 분자량 제어에 따른 의치상 재료로서의 기계적 물성 변화)

  • 양경모;정동준
    • Polymer(Korea)
    • /
    • v.27 no.5
    • /
    • pp.493-501
    • /
    • 2003
  • Poly(methyl methacrylate) (PMMA) particles, denture base resin, were synthesized by suspension polymerization through control of polymerization conditions (stabilizer concentration, co-monomer concentration, and the agitation speed) and evaluated changes in molecular weight and particle size. We also investigated their mechanical properties of compression-molded samples which were from synthesized polymer powder mixed with methyl methacrylate (MMA) solution. under the condition of volumetric ratio as 2:1(PMMA powder and MMA solution). The results shows that the mechanical properties were mainly affected by particle size over 100 ${\mu}$m (in particle size) and by molecular weight under 100 ${\mu}$m (in particle size). From these results, we concluded that the most appropriate particle size of PMMA powder for heat-cured denture base resins is around 100 ${\mu}$m. and its molecular weight is around 300000 (M$\sub$n/).

절연성 고분자 poly(methyl methacrylate) 박막 층 안에 분산된 $SnO_2$ 나노입자를 사용한 유기 쌍안정성 소자의 안전성

  • Park, Hun-Min;Yu, Chan-Ho;Kim, Tae-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.378-378
    • /
    • 2012
  • 나노복합체를 이용하여 제작한 유기 쌍안정성 형태의 비휘발성 메모리 소자는 간단한 공정과 플렉서블 기기에 응용 가능성 때문에 많은 연구가 진행되고 있다. 나노복합체를 사용하여 제작한 비휘발성 메모리 소자의 전기적 성질에 대한 연구는 많이 진행되었으나, poly (methyl methacrylate) (PMMA) 고분자 박막 내부에 분산된 $SnO_2$ 나노입자를 이용하여 제작한 유기 쌍안정성 소자에서 기억 특성의 안정성에 대한 연구는 상대적으로 미흡하다. 본 연구에서는 PMMA 박막층 내부에 분산된 $SnO_2$ 나노입자를 사용한 메모리 소자를 제작하여 전기적 특성 및 안정성에 대하여 관찰하였다. $SnO_2$ 나노입자를 PMMA와 용매인 클로로벤젠에 용해한 후에 초음파 교반기를 사용하여 두 물질을 고르게 섞었다. 전극이 되는 indium-tin-oxide 가 성장된 유리 기판 위에 $SnO_2$ 나노입자와 PMMA가 섞인 용액을 스핀 코팅한 후, 열을 가해 용매를 제거하여 SnO2 나노입자가 PMMA에 분산되어 있는 유기 쌍안정성 형태의 나노복합체 박막을 형성하였다. 형성된 나노복합체 박막 위에 상부 전극으로 Al을 열증착하여 비휘발성 메모리 소자를 제작하였다. 제작된 소자의 전류-전압 측정 결과는 메모리 특성을 나타내는 ON과 OFF의 두 가지 상태가 존재하고 ON/OFF 전류 비율은 20이었다. $SnO_2$ 나노입자를 포함하지 않은 소자와 비교를 통해 $SnO_2$ 나노입자가 비휘발성 메모리 소자에서의 전하 저장 영역으로 하는 역할을 확인하였다. 전류-시간 측정 결과 소자의 ON/OFF 전류 비율이 시간에 따라 큰 변화 없이 1,000회 이상 지속적으로 유지함을 관찰함으로써 소자의 안정성을 확인하였다.

  • PDF

Fluidically-Controlled Phase Tunable Line Using Inkjet-Printed Microfluidic Composite Right/Left Handed Transmission Line (유체를 이용하여 위상응답을 제어하기 위해 잉크젯 프린팅으로 구현한 미세유체채널 복합 좌·우향 전송선로)

  • Choi, Sungjin;Lim, Sungjoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.1
    • /
    • pp.47-53
    • /
    • 2015
  • In this paper, a novel fluid controlled phase tunable line using inkjet printed microfluidic composite right/left-handed(CRLH) transmission line(TL) is proposed. A CRLH-TL prototype has been inkjet-printed on a paper substrate using silver nano particle ink. In addition, a laser-etched microfluidic channel in poly methyl methacrylate(PMMA) has been integrated with the CRLH TL using inkjet-printed SU-8 as a bonding material. The proposed TL provides excellent phase-tuning capability that is dependent on the different fluidic materials used. As the fluid is changed, the proposed TL can have negative-phase, zero-phase, and positive-phase characteristics at 900 MHz and reflection coefficient is maintained to below -10 dB. The performance of the proposed TL is successfully validated using simulation and measurement results.

Surface Characterization of the d-PMMA Thin Films Treated by Oxygen Plasma (산소 플라즈마 처리된 d-PMMA 박막의 표면특성 분석)

  • Kim, Soong-Hoon;Choi, Dong-Jin;Lee, Jeong-Su;Choi, Ho-Suk
    • Polymer(Korea)
    • /
    • v.33 no.3
    • /
    • pp.263-267
    • /
    • 2009
  • In order to improve the hydrophilic property on the surface of d-PMMA(deuterated poly-(methyl methacrylate)) film, it was exposed to oxygen plasma, All experimental conditions were same except to plasma exposure time that was varied from 0 to 180 s, The effects according to the exposure time were identified using contact angles, X-ray reflectometer(XRR), neutron reflectometer(NR), and X-ray photoelectron spectroscopy(XPS). By confirming that as the exposure time increases, water contact angle decreases while the composition of oxygen increases, it was confirmed that the composition of oxygen has a huge influence on improving the hydrophilic property. The physical characters as a function of the exposure time were investigated by the XRR. By analyzing complementally the results of the XRR, NR, and XPS, more detailed chemical bonding conditions were studied by obtaining not only composition of the carbon and oxygen but that of the hydrogen.

New Photochemistry of UV-Absorbing Chemicals in Phase-Controlled Polymer Microspheres (상구조가 조절된 고분자 미립구에서 자외선 흡수제의 거동에 대한 연구)

  • Lee Jong-Suk;Kim Jin-Woong;Kim Junoh;Han Sang-Hoon;Chang Ih-Seop
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.3 s.47
    • /
    • pp.361-367
    • /
    • 2004
  • In this study, a different UV (ultra-violet) ray absorption system is presented in which butyl methoxydiben-zoylmethane (BMDM, a model UV-A absorbent, 320$\~$400 nm) is stabilized in phase-controlled poly(methyl methacrylate) (PMMA) microspheres. The photochemistry of BMDM in the microspheres was investigated considering its phase characteristics therein. The analysis of a differential scanning calorimeter and X-ray diffractometer showed that the BMDM in the microspheres was present with a non-crystalline state. The phase control of BMDM in the polymer microsphere has an excellent ability to protect UV-A with maintaining its photo- and thermal stability. The results obtained in this study illustrate well that the phase control of the UV absorbents in the polymer microspheres is another key factor that de-termines its photochemistry and photostability in the final formulations.

Unusual Facilitated Olefin Transport through Polymethacrylate/Silver Salt Complexes

  • Kim, Jong-Hak;Joo, Seung-Hwan;Kim, Chang-Kon;Kang, Yong-Soo;Jongok Won
    • Macromolecular Research
    • /
    • v.11 no.5
    • /
    • pp.375-381
    • /
    • 2003
  • Silver salt complex membranes with glassy poly(methyl methacrylate) (PMMA) unexpectedly showed higher propylene permeance than those with rubbery poly(butyl methacrylate) (PBMA) where as neat PMMA is much less permeable to propylene than that of neat PBMA. Such unusual facilitated olefin transport has been systematically investigated by changing the side chain length of polymethacrylates (PMAs) from methyl, ethyl to butyl. The ab initio calculation showed almost the same electron densities of the carbonyl oxygens in the three PMAs, expecting very similar intensity of the interaction between carbonyl oxygen and silver ion. However, the interaction intensity decreases with the length of the alkyl side chain: PMMA > PEMA > PBMA according to wide angle X-ray scattering and FT-Raman spectroscopy. The difference in the interaction intensity may arise from the difference in the hydrophilicity of the three PMAs, as confirmed by the contact angle of water, which determines the concentrations of the ionic constituents of silver salts: free ion, contact ion pair and higher order ionic aggregate. However, propylene solubilities and facilitated propylene transport vary with the side chain length significantly even at the same concentration of the free ion, the most active olefin carrier, suggesting possible difference in the prohibition of the molecular access of propylene to silver ion by the side chains: the steric hindrance. Therefore, it may be concluded that both the hydrophilicity and the steric hindrance associated with the side chain length in the three PMAs are of pivotal importance in determining facilitated olefin transport through polymer/silver salt complex membranes.

Effects of Oxygen Plasma-treated Graphene Oxide on Mechanical Properties of PMMA/Aluminum Hydroxide Composites (산소 플라즈마 처리된 그래핀 산화물이 PMMA/수산화알루미늄 컴포지트의 기계적 물성에 미치는 영향)

  • Kim, Hyo-Chul;Jeon, Son-Yeo;Kim, Hyung-Il;Choi, Ho-Suk;Hong, Min-Hyuk;Choi, Ki-Seop
    • Polymer(Korea)
    • /
    • v.35 no.6
    • /
    • pp.565-573
    • /
    • 2011
  • The nanocomposites containing graphene oxide (GO) were prepared in order to improve the mechanical properties of poly(methyl methacrylate)/aluminum hydroxide (PMMA/AH) composites. GO was prepared from graphite by oxidation of Hummers method followed by exfoliation with thermal treatment. The surface of GO was modified by oxygen plasma in various exposure times from 0 to 70 min to improve interfacial compatibility. Compared with PMMA/AH composites, the nanocomposites containing GO modified with oxygen plasma for the exposure time up to 50 min showed significant increases in flexural strength, flexural modulus, Rockwell hardness, Barcol hardness, and Izod impact strength. The morphology of fracture surface showed an improved interfacial adhesion between PMMA/AH composites and GO, which was properly treated with oxygen plasma. The mechanical properties of nanocomposites were deteriorated by increasing the content of GO above 0.07 phr due to the nonuniform dispersion of GO.

Effect of Coupling Agent, Methylene Diisocyanate, in the Blending of Poly(methyl methacrylate)-Modified Starch and Styrene-Butadiene Rubber (폴리(메틸 메타크릴레이트)-개질된 전분과 스티렌-부타디엔 고무의 혼합에서 커플링제 메틸렌 디이소시아네이트의 효과)

  • Li, Mei-Chun;Cho, Ur Ryong
    • Elastomers and Composites
    • /
    • v.49 no.2
    • /
    • pp.117-126
    • /
    • 2014
  • Methylene diisocyanate (MDI) was investigated as a novel interfacial modifier to enhance the performances of poly(methyl methacrylate)-modified starch/styrene-butadiene rubber (PMMA-modified starch/SBR) composites. Owing to the formation urethane linkage on one side and ${\pi}-{\pi}$ adhesion on the other side, MDI acted as an intermediated linkage role in the PMMA-modified starch/SBR interfaces, which was evidenced by the morphological, mechanical, dynamic mechanical and thermal decomposition studies. As a result, the presence of MDI significantly improved the mechanical properties and thermal stability of PMMA-modified starch/SBR composites. In addition, the effect of starch concentration on the various performances of the resulted MDI/PMMA-modified starch/SBR composites, such as morphology, vulcanization characteristics, mechanical properties, toluene swelling behavior, and thermal stability were investigated and discussed in detail. The obtained MDI/PMMA-modified starch/SBR composites exhibited superior mechanical properties to carbon black/SBR (CB/SBR) composites, demonstrating the potential use of the renewable starch as a substitute for CB in the rubber compounds.