Browse > Article

Effects of Oxygen Plasma-treated Graphene Oxide on Mechanical Properties of PMMA/Aluminum Hydroxide Composites  

Kim, Hyo-Chul (Department of Fine Chemical Engineering Applied Chemistry, Chungnam National University)
Jeon, Son-Yeo (Department of Fine Chemical Engineering Applied Chemistry, Chungnam National University)
Kim, Hyung-Il (Department of Fine Chemical Engineering Applied Chemistry, Chungnam National University)
Choi, Ho-Suk (Department of Chemical Engineering, Chungnam National University)
Hong, Min-Hyuk (Lion Chemtech Co., Ltd.)
Choi, Ki-Seop (Lion Chemtech Co., Ltd.)
Publication Information
Polymer(Korea) / v.35, no.6, 2011 , pp. 565-573 More about this Journal
Abstract
The nanocomposites containing graphene oxide (GO) were prepared in order to improve the mechanical properties of poly(methyl methacrylate)/aluminum hydroxide (PMMA/AH) composites. GO was prepared from graphite by oxidation of Hummers method followed by exfoliation with thermal treatment. The surface of GO was modified by oxygen plasma in various exposure times from 0 to 70 min to improve interfacial compatibility. Compared with PMMA/AH composites, the nanocomposites containing GO modified with oxygen plasma for the exposure time up to 50 min showed significant increases in flexural strength, flexural modulus, Rockwell hardness, Barcol hardness, and Izod impact strength. The morphology of fracture surface showed an improved interfacial adhesion between PMMA/AH composites and GO, which was properly treated with oxygen plasma. The mechanical properties of nanocomposites were deteriorated by increasing the content of GO above 0.07 phr due to the nonuniform dispersion of GO.
Keywords
PMMA; graphene oxide; aluminum hydroxide; oxygen plasma; mechanical properties;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, Carbon, 45, 1558 (2007).   DOI   ScienceOn
2 C. Hontoria-Lucas, A. J. Lopez-Peinado, J. Lopez-Gonzalez, M. L. Rojas-Cervantes, and R. M. Martin-Aranda, Carbon, 33, 1585 (1995).   DOI   ScienceOn
3 X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, and H. Dai, Nat. Nanotechnol., 3, 538 (2008).   DOI   ScienceOn
4 T. Chiang and F. Seitz, Ann. Phys., 10, 61 (2001).   DOI   ScienceOn
5 S. Yumitori, J. Mater. Sci., 35, 139 (2000).   DOI   ScienceOn
6 S. H Kim, D. J. Choi, J. S. Lee, and H. S. Choi, Polymer (Korea), 33, 263 (2009).
7 Y. Geng, S. J. Wang, and J. K. Kim, J. Colloid Interf. Sci., 336, 592 (2009).   DOI   ScienceOn
8 J. F. Shen, N. Li, M. Shi, Y. Z. Hu, and M. X. Ye, J. Colloid Interf. Sci., 348, 377 (2010).   DOI   ScienceOn
9 S. S. Barton, J. Colloid Interf. Sci., 179, 449 (1996).   DOI   ScienceOn
10 R. Bissessur, P. K. Y. Liu, and S. F. Scully, Synth. Met., 156, 1023 (2006).   DOI   ScienceOn
11 T. Nakajima, A. Mabuchi, and R. Hagiwara, Carbon, 26, 357 (1988).   DOI   ScienceOn
12 S. Stankovich, R. D. Piner, X. Chen, N. Wu, S. T. Nguyen, and R. S. Ruoff, J. Mater. Chem., 16, 155 (2006).   DOI   ScienceOn
13 I. Novak, V. Pollák, and I. Chodak, Plasma Process Polym., 3, 355 (2006).   DOI   ScienceOn
14 H. Riddle, Monomeric Acrylic Esters, Reinhold Publishing Co., New York, 1954.
15 S. Süzer, A. Argun, O. Vatansever, and O. Aral, J. Appl. Polym. Sci., 74, 1846 (1999).   DOI   ScienceOn
16 I. Mathieson and R. H. Bradley, Int. J. Adhes. Adhes., 16, 29 (1996).   DOI   ScienceOn
17 M. B. Horn, Acrylic Resins, Reinhold Publishing, New York, 1960.
18 H. Coyard, P. Deligny, N. Tuck, and P. Oldring, Resins for Surface Coatings: Acrylics and Epoxies, 2nd ed., John Wiley & Sons, New York, 2001.
19 W. Hummers and R. Offeman J. Am. Chem. Soc., 80, 1339 (1958).   DOI
20 G. Wang, X. Shen, J. Yao, and J. Park, Carbon, 47, 2049 (2009).   DOI   ScienceOn
21 N. Inagaki, K. Narushim, N. Tuchida, and K. Miyazaki, J. Polym. Sci. Part B: Polym. Phys., 42, 3727 (2004).   DOI   ScienceOn
22 D. W. Dwight and W. M. Riggs, J. Colloid Interf. Sci., 47, 650 (1974).   DOI   ScienceOn
23 D. Hegemann, H. Brunner, and C. Oehr, Nucl. Instrum. Methods Phys. Res. B, 208, 281 (2003).   DOI
24 J. R. Chen, X. Y. Wang, and W. Tomiji, J. Appl. Polym. Sci., 72, 1327 (1999).   DOI   ScienceOn
25 S. Okuji, M. Sekiya, M. Nakabayashi, H. Endo, N. Sakudo, and K. Nagai, Nucl. Instrum. Methods Phys. Res. B, 242, 353 (2006).   DOI   ScienceOn
26 K. Dworecki, M. Drabilc, T. Hasegawa, and S. Wasik, Nucl. Instrum. Methods Phys. Res. B, 225, 483 (2004).   DOI   ScienceOn
27 K. S. Novoselov A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature, 438, 197 (2005).   DOI   ScienceOn
28 L. M. Ericson, H. Fan, H. Peng, V. A. Davis, W. Zhou, J. Sulpizio, Y. Wang, R. Booker, J. Vavro, C. Guthy, A. N. G. Parra-Vasquez, M. J. Kim, S. Ramesh, R. K. Saini, C. Kittrell, G. Lavin, H. Schmidt, W. W. Adams, W. E. Billups, M. Pasquali, W. F. Hwang, R. H. Hauge, J. E. Fischer, and R. E. Smalley, Science, 305, 1447 (2004).   DOI
29 T. Ramanathan, A. A. Abdala, S. Stankovich, D. A. Dikin, M. Herrera-Alonso, R. D. Piner, D. H. Adamson, H. C. Schniepp, X. Chen, R. S. Ruoff, S. T. Nguyen, I. A. Aksay, R. K. Prud'Homme, and L. C. Brinson, Nat. Nanotechnol., 3, 327 (2008).   DOI   ScienceOn
30 R. D. Astumian and Z. A. Schelly, J. Am. Chem. Soc., 106, 304 (1984).   DOI   ScienceOn
31 Y. B. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature, 438, 201 (2005).   DOI   ScienceOn
32 C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. Heer, Science, 312, 1191 (2006).   DOI   ScienceOn
33 K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, Proc. Natl. Acad. Sci. USA, 102, 10451 (2005).   DOI   ScienceOn
34 C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. Heer, J. Phys. Chem. B, 108, 19912 (2004).   DOI   ScienceOn
35 J. H. Han, K. W. Cho, K. H. Lee, and H. Kim, Carbon, 36, 1801 (1998).   DOI   ScienceOn
36 C. Gomez-Navarro, R. T. Weitz, A. M. Bittner, M. Scolari, A. Mews, M. Burghard, and K. Kern, Nano Lett., 7, 3499 (2007).   DOI   ScienceOn
37 Y. W. Tan, Y. B. Zhang, H. L. Stormer, and P. Kim, Eur. Phys. J., 148, 15 (2007).
38 R. A. Greinke and R. A. Reyolds, U. S. Patent 6,416,815 (2002).
39 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science, 306, 666 (2004).   DOI
40 A. K. Geim and K. S. Novoselov, Nat. Mater., 6, 183 (2007).   DOI   ScienceOn
41 S. Stankovich, R. D. Piner, X. Chen, N. Wu, S. T. Nguyen, and R. S. Ruoff, J. Mater. Chem., 16, 155 (2006).   DOI   ScienceOn
42 J. J. Luo and I. M. Daniel, Compos. Sci. Technol., 63, 607 (2003).
43 L. Shen and J. K. Li, Proc. Roy. Soc. a-Math. Phys. Eng. Sci., 461, 2057 (2005).
44 C. Kozlowski and P. Sherwood, J. Chem. Soc. Farad. Trans. 1-Phys. Chem. Condensed Phases, 80, 2099 (1984).
45 M. I. Awad, M. Saleh, and T. Ohsaka, J. Solid State Electr., 12, 251 (2008).   DOI   ScienceOn
46 G. Zhang, S. Sun, D. Yang, J.-P. Dodelet, and E. Sacher, Carbon, 46, 196 (2008).   DOI   ScienceOn
47 G. M. Odegard and T. S. Gates, J. Intell. Mater. Syst. Struct., 17, 239 (2006).   DOI   ScienceOn
48 D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R. D. Piner, S. Stankovich, I. Jung, D. A. Field, C. A. Ventrice Jr., and R. S. Ruoff, Carbon, 47, 145 (2009).   DOI   ScienceOn
49 T. Mori and K. Tanaka, Acta Metall., 21, 571 (1973).   DOI   ScienceOn
50 Y. Benveniste, Mech. Mater., 6, 147 (1987).   DOI   ScienceOn
51 R. M. Christensen, J. Mech. Phys. Solids, 38, 379 (1990).   DOI   ScienceOn
52 C. Tucker and E. Liang, Compos. Sci. Technol., 59, 655 (1999).   DOI   ScienceOn
53 H. Liu and L. Brinson, J. Appl. Mech., 73, 758 (2006).   DOI   ScienceOn