• Title/Summary/Keyword: poly-(ADP-ribose) polymerase

Search Result 399, Processing Time 0.026 seconds

Relation of Poly(ADP-ribose) Polymerase Cleavage and Apoptosis Induced by Paclitaxel in HeLa S3 Uterine Cancer Cells (HeLa S3 자궁암 세포에서 paclitaxel 에 의해 유도된 Poly(ADP-ribose) Polymerase 분철과 세포자멸사와의 관계)

  • Chang, Jeong-Hyun;Kim, Kwang-Youn;Ahn, Soon-Cheol;Kwon, Heun-Young
    • Journal of Life Science
    • /
    • v.17 no.8 s.88
    • /
    • pp.1027-1033
    • /
    • 2007
  • Although paclitaxel induces apoptosis of cancer cells, its exact mechanism of action is not yet known. The present study has been performed to determine whether influence of paclitaxel in HeLa $S_{3}$ uterine cancer cells. Three assays were employed in this study: cell cytotoxicity, morphological assessments of apoptotic cells (DAPI staining assay), and western blot analysis. The results indicated that paclitaxel has cytotoxic effects in HeLa $S_{3}$ cells. Especially, the $IC_{50}$ value of paclitaxel was about 1 ${\mu}M$. And morphological changes (fragmentation) of cells were observed by paclitaxel in HeLa $S_{3}$ cells. The flow cytometric analysis of paclitaxel-treated cells indicated a block of G2/M phase. The results that pacli-taxel regulates the cell cycle, especially Sub-$G_{1}$ phase. Paclitaxel induces apoptosis of HeLa $S_{3}$ cells via PARP-dependent fashion, and this apoptosis is related to disappearance of Bcl-2 proteins.

Inhibition of PI3K/AKT Signaling Pathway Enhances Cordycepin-Induced Apoptosis in Human Gastric Cancer Cells (인체위암 세포에서 PI3K/AKT 신호 전달계 차단에 의한 동충하초 유래 Cordycepin의 Apoptosis 유발 효과 증진)

  • Lee, Hye Hyeon;Jeong, Jin-Woo;Choi, Yung Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.6
    • /
    • pp.835-842
    • /
    • 2016
  • The phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway plays a crucial role in cancer occurrence by promoting cell proliferation and inhibiting apoptosis. In the present study, we evaluated the effect of a PI3K inhibitor, LY294002, on the chemosensitivity of gastric cancer cells to cordycepin, a predominant functional component of the fungus Cordyceps militaris, in AGS human gastric cancer cells and investigated possible underlying cellular mechanisms. Our results revealed that cordycepin inhibited viability of AGS cells in a concentration-dependent manner and induced apoptosis, as determined by apoptotic cell morphologies and fluorescence-activated cell sorting analysis associated with attenuated activation of the PI3K/Akt signaling pathway. Treatment with cordycepin in combination with a subtoxic concentration of LY294002 enhanced cordycepin-induced cytotoxicity and apoptotic potentials in AGS cells. Sensitization of LY294002 to cordycepin-induced apoptosis was accompanied by activation of caspases (caspases-3, -8, and -9) and was concomitant with poly(ADP-ribose) polymerase cleavage. Moreover, LY294002 up-regulated pro-apoptotic Bax and enhanced truncation of Bid in cordycepin-treated AGS cells, which was connected with increased loss of mitochondrial membrane potential and release of cytochrome c from mitochondria to the cytosol. Taken together, these results indicate that inhibition of the PI3K/Akt signaling pathway could augment cordycepin-induced apoptosis in human gastric cancer cells by up-regulating caspase activity through mitochondrial dysfunction.

Ishige sinicola Extracts Induce Apoptosis via Activation of a Caspase Cascade in Human HeLa Cells (넓패 추출물이 HeLa 자궁암세포의 세포사멸에 미치는 영향)

  • Cho, Byoung-Ok;Ryu, Hyung-Won;So, Yang-Kang;Jin, Chang-Hyun;Byun, Myung-Woo;Kim, Wang-Geun;Jeong, Il-Yun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.7
    • /
    • pp.901-906
    • /
    • 2012
  • The purpose of this study was to elucidate the anti-proliferative effect and the mechanisms underlying apoptosis induced by a methanol extracts from Ishige sinicola (ISE) in HeLa cells. ISE treatment for 24 hr significantly inhibited cell viability in a dose-dependent manner. Apoptosis was detected by Hoechst 33258 staining and an annexin V/PI assay after 24 hr treatment. Moreover, ISE treatment triggered the cleavage of caspase-8, -9, -3, and poly(ADP-ribose) polymerase (PARP) in dose-dependent and time-dependent manners. In addition, z-VAD-fmk, a general caspase inhibitor, blocked ISE-induced cell death. Taken together, these results suggest that ISE-induced apoptosis is mediated by the activation of a caspase cascade in HeLa cells.

Induction of Apoptosis and G2/M Cell Cycle Arrest by Cordycepin in Human Prostate Carcinoma LNCap Cells (Cordycepin에 의한 LNCap 인체 전립선 암세포의 apoptosis 및 G2/M arrest 유발)

  • Lee, Hye Hyeon;Hwang, Won Deok;Jeong, Jin-Woo;Park, Cheol;Han, Min Ho;Hong, Su Hyun;Jeong, Yong Kee;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.24 no.1
    • /
    • pp.92-97
    • /
    • 2014
  • Cordycepin, an active component originally isolated from the traditional medicine Cordyceps militaris, is a derivative of the nucleoside adenosine, which has been shown to possess a number of pharmacological properties, including antioxidant and anti-inflammatory activities, immunological stimulation, and antitumor effects. This study was conducted on cultured human prostate carcinoma LNCap cells to elucidate the possible mechanisms by which cordycepin exerts its anticancer activity, which, until now, has remained poorly understood. Cordycepin treatment of LNCap cells resulted in dose-dependent inhibition of cell growth and the induction of apoptotic cell death as detected by an MTT assay, cleavage of poly ADP-ribose polymerase, and annexin V-FITC staining. Flow cytometric analysis revealed that cordycepin resulted in G2/M arrest in cell cycle progression and downregulation of cyclin B1 and cyclin A expression in a concentration-dependent manner. Moreover, the incubation of cells with cordycepin caused a striking induction in the expression of the cyclin-dependent kinase (CDK) inhibitor p21Waf1/Cip1 without affecting the expression of the tumor suppressor p53. It also resulted in a significant increase in the binding of CDK2 and CDC2 to p21. These findings suggest that cordycepin-induced G2/M arrest and apoptosis in human prostate carcinoma cells is mediated through p53-independent upregulation of the CDK inhibitor p21.

Pseudomonas aeruginosa Exotoxin A Induces Apoptosis in Chemoresistant YD-9 Human Oral Squamous Carcinoma Cell Line Via Accumulation of p53 and Activation of Caspases (항암제에 저항성을 가지는 YD-9 human oral squamous carcinoma cell line에서 Pseudomonas aeruginosa exotoxin A의 p53 단백질 누적과 caspase를 활성화 경로를 통해 유도된 세포자멸사)

  • Kim, Gyoo-Cheon;Gil, Young-Gi
    • Journal of Life Science
    • /
    • v.19 no.8
    • /
    • pp.1047-1054
    • /
    • 2009
  • Oral squamous carcinoma (OSC) cells present resistance to chemotherapeutic agents-mediated apoptosis in the late stages of malignancy. Advances in the understanding of bacterial toxins have produced new strategies for the treatment of cancers. It was demonstrated here that Pseudomonas aeruginosa exotoxin A (PEA) significantly decreased the viability of chemoresistant YD-9 cells in the apoptosis mechanism. Apoptotic manifestations were evident through changes in nuclear morphology and generation of DNA fragmentation. PEA treatment induced caspase-3, -6 and -9 cleavage, and activation. These events preceded proteolysis of the caspase substrates poly (ADP-ribose) polymerase (PARP), DNA fragmentation factor 45 (DFF45), and lamin A in YD-9 cells. The reduction of mitochondrial membrane potential, release of cytochrome c and SmacjDlABLO from mitochondria to cytosol, andtranslocation of AlF into nucleus were shown. While p53, p21 and $14-3-3{\gamma}$ were upregulated, cyclin Band cdc2 were downregulated by PEA treatment. Taken together, PEA induces apoptosis in chemoresistant YD-9 cells via activation of caspases, mitochondrial events and regulation of cell cycle genes.

Induction of G1 Phase Cell Cycle Arrest and Apoptotic Cell Death by 5-Fluorouracil in Ewing′s Sarcoma CHP-100 Cells (CHP-100 Ewing′s 육종세포에서 5-fluorouracil에 의한 G1 arrest 유도 및 apoptosis 유발에 관한 연구)

  • Kim, Sung Ok;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.26 no.9
    • /
    • pp.1015-1021
    • /
    • 2016
  • 5-fluorouracil (5-FU), a pyrimidine analog, is a widely used anticancer drug, which works through irreversible inhibition of thymidylate synthase. In the present study, it was investigated the anti-proliferative effects and molecular mechanisms of 5-FU using Ewing's Sarcoma CHP-100 Cells. The present data indicated that treatment of 5-FU to CHP-100 cells induced a G1 phase arrest of the cell cycle in a time-dependent manner. 5-FU-induced G1 arrest was correlated with the accumulation of the hypophosphorylated form of the retinoblastoma protein (pRB) and association of pRB with the transcription factors E2F-1 and E2F-4. Although 5-FU treatment did affect the levels of cyclin-dependent kinases, the levels of cyclin A and B were markedly down-regulated as compared with the untreated control group. In addition, 5-FU-induced G1 arrest of CHP-100 cells was also associated with the induction of apoptosis, as determined by apoptotic cell morphologies, degradation of poly(ADP-ribose) polymerase and Annexin V staining. Furthermore, 5-FU induced the loss of mitochondrial membrane potential with up-regulated pro-apoptotic Bax expression, down-regulated anti-apoptotic Bcl-2 expression and cytochrome c release from mitochondria to cytosol. Collectively, the data suggest that 5-FU is effective in inducing cell growth reduction and apoptosis, in part, by reducing phosphorylation of pRB and activating mitochondrial dysfunction in CHP-100 cells.

Protective Effects of Membrane-Free Stem Cell Extract from H2O2-Induced Inflammation Responses in Human Periodontal Ligament Fibroblasts (무막줄기세포추출물의 H2O2에 의해 유도된 치주 세포의 염증 반응 보호 효과)

  • He, Mei Tong;Kim, Ji Hyun;Kim, Young Sil;Park, Hye Sook;Cho, Eun Ju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.95-103
    • /
    • 2019
  • Periodontal inflammation, a major kind of periodontal diseases, is characterized to bleed, pain, and teeth loss, and it is resulted from oxidative stress. Membrane-free stem cell extract could avoid the immunogencity rejection by removal of cell membrane. In the present study, we investigated the protective effect of membrane-free stem cell extract from oxidative stress-induced periodontal inflammation in human periodontal ligament fibroblasts (HPLF). In the cell viability measurement, membrane-free stem cell extract showed significant increase of cell viability, compared with the $H_2O_2$-treated control group. To further investigation of molecular mechanisms, we measured inflammation and apoptosis related protein expressions. Membrane-free stem cell extract attenuated inflammation-related protein expressions such as nuclear factor kappa light chain enhancer of activated B cells, inducible nitric oxide synthase, and interleukin-6. In addition, the treatment of membrane-free stem cell extract decreased apoptotic protein expressions such as cleaved caspase-9, -3, poly (ADP-ribose) polymerase, and B-cell lymphoma 2 (Bcl-2)-associated X protein/Bcl-2 ratio in the $H_2O_2$-treated HPLF cells. In conclusion, membrane-free stem cell extract exhibited anti-oxidative stress effects by regulation of inflammation and apoptosis in HPLF, suggesting that it could be used as the treatment agents for periodontal inflammatory disease.

Anticancer Effect of Thymol on AGS Human Gastric Carcinoma Cells

  • Kang, Seo-Hee;Kim, Yon-Suk;Kim, Eun-Kyung;Hwang, Jin-Woo;Jeong, Jae-Hyun;Dong, Xin;Lee, Jae-Woong;Moon, Sang-Ho;Jeon, Byong-Tae;Park, Pyo-Jam
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.1
    • /
    • pp.28-37
    • /
    • 2016
  • Numerous plants have been documented to contain phenolic compounds. Thymol is one among these phenolic compounds that possess a repertoire of pharmacological activities, including anti-inflammatory, anticancer, antioxidant, antibacterial, and antimicrobial effects. Despite of the plethora of affects elicited by thymol, its activity profile on gastric cancer cells is not explored. In this study, we discovered that thymol exerts anticancer effects by suppressing cell growth, inducing apoptosis, producing intracellular reactive oxygen species, depolarizing mitochondrial membrane potential, and activating the proapoptotic mitochondrial proteins Bax, cysteine aspartases (caspases), and poly ADP ribose polymerase in human gastric AGS cells. The outcomes of this study displayed that thymol, via an intrinsic mitochondrial pathway, was responsible for inducing apoptosis in gastric AGS cells. Hence, thymol might serve as a tentative agent in the future to treat cancer.

Parkin induces apoptotic cell death in TNF-α-treated cervical cancer cells

  • Lee, Kyung-Hong;Lee, Min-Ho;Kang, Yeo-Wool;Rhee, Ki-Jong;Kim, Tae-Ue;Kim, Yoon-Suk
    • BMB Reports
    • /
    • v.45 no.9
    • /
    • pp.526-531
    • /
    • 2012
  • Many malignant tumors become resistant to tumor necrosis factor-alpha (TNF-${\alpha}$)-induced cell death during carcinogenesis. In the present study, we examined whether parkin acts as a tumor suppressor in HeLa cells, a human cervical cancer cell line resistant to TNF-${\alpha}$-induced cell death. TNF-${\alpha}$-treatment alone did not affect HeLa cell viability. However, expression of parkin restored TNF-${\alpha}$-induced apoptosis in HeLa cells. Increased cell death was due to the activation of the apoptotic pathway. Expression of parkin in TNF-${\alpha}$-treated HeLa cells stimulated cleavage of the pro-apoptotic proteins caspase-8, -9, -3, -7 and poly ADP ribose polymerase (PARP). In addition, parkin expression resulted in decreased expression of the caspase inhibitory protein, survivin. These results suggest that parkin acts as a tumor suppressor in human cervical cancer cells by modulating survivin expression and caspase activity. We propose that this pathway is a novel molecular mechanism by which parkin functions as a tumor suppressor.

Methylated-UHRF1 and PARP1 interaction is critical for homologous recombination

  • Hahm, Ja Young;Kang, Joo-Young;Park, Jin Woo;Jung, Hyeonsoo;Seo, Sang-Beom
    • BMB Reports
    • /
    • v.53 no.2
    • /
    • pp.112-117
    • /
    • 2020
  • A recent study suggested that methylation of ubiquitin-like with PHD and RING finger domain 1 (UHRF1) is regulated by SET7 and lysine-specific histone demethylase 1A (LSD1) and is essential for homologous recombination (HR). The study demonstrated that SET7-mediated methylation of UHRF1 promotes polyubiquitination of proliferating cell nuclear antigen (PCNA), inducing HR. However, studies on mediators that interact with and recruit UHRF1 to damaged lesions are needed to elucidate the mechanism of UHRF1 methylation-induced HR. Here, we identified that poly [ADP-ribose] polymerase 1 (PARP1) interacts with damage-induced methylated UHRF1 specifically and mediates UHRF1 to induce HR progression. Furthermore, cooperation of UHRF1-PARP1 is essential for cell viability, suggesting the importance of the interaction of UHRF1-PARP1 for damage tolerance in response to damage. Our data revealed that PARP1 mediates the HR mechanism, which is regulated by UHRF1 methylation. The data also indicated the significant role of PARP1 as a mediator of UHRF1 methylation-correlated HR pathway.