DOI QR코드

DOI QR Code

Relation of Poly(ADP-ribose) Polymerase Cleavage and Apoptosis Induced by Paclitaxel in HeLa S3 Uterine Cancer Cells

HeLa S3 자궁암 세포에서 paclitaxel 에 의해 유도된 Poly(ADP-ribose) Polymerase 분철과 세포자멸사와의 관계

  • Chang, Jeong-Hyun (Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan) ;
  • Kim, Kwang-Youn (Department of Microbiology and Immunology, Pusan National University School of Medicine) ;
  • Ahn, Soon-Cheol (Department of Microbiology and Immunology, Pusan National University School of Medicine) ;
  • Kwon, Heun-Young (Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan)
  • 장정현 (부산카톨릭대학교 보건과학대학 임상병리학과) ;
  • 김광연 (부산대학교 미생물학 및 면역학교실) ;
  • 안순철 (부산대학교 미생물학 및 면역학교실) ;
  • 권헌영 (부산카톨릭대학교 보건과학대학 임상병리학과)
  • Published : 2007.08.30

Abstract

Although paclitaxel induces apoptosis of cancer cells, its exact mechanism of action is not yet known. The present study has been performed to determine whether influence of paclitaxel in HeLa $S_{3}$ uterine cancer cells. Three assays were employed in this study: cell cytotoxicity, morphological assessments of apoptotic cells (DAPI staining assay), and western blot analysis. The results indicated that paclitaxel has cytotoxic effects in HeLa $S_{3}$ cells. Especially, the $IC_{50}$ value of paclitaxel was about 1 ${\mu}M$. And morphological changes (fragmentation) of cells were observed by paclitaxel in HeLa $S_{3}$ cells. The flow cytometric analysis of paclitaxel-treated cells indicated a block of G2/M phase. The results that pacli-taxel regulates the cell cycle, especially Sub-$G_{1}$ phase. Paclitaxel induces apoptosis of HeLa $S_{3}$ cells via PARP-dependent fashion, and this apoptosis is related to disappearance of Bcl-2 proteins.

Paclitaxel이 암세포에서 세포예정사를 유발할지라도, 아직 정확한 기전은 잘 알려져 있지 않다. 이에 본 연구에서는 HeLa $S_{3}$ 자궁암세포에서의 paclitaxel이 어떠한 영향을 미치는지 알아보고자 한다. 그리하여 방법으로는 세포독성검사, apoptotic cells의 형태학적 변화(DAPI 염색 ), western blot 분석법을 사용하여 수행하였다. 본 연구의 결과로 paclitaxel은 HeLa $S_{3}$ 세포에서 세포독성을 보이며 특히 paclitaxel의 $IC_{50}$ 값은 약 1 ${\mu}M$이며, paclitaxel 처리한 HeLa $S_{3}$ 세포에서 형태학적 변화(분절화)를 관찰하였고, flow cytometric 분석에서는 G2/M기가 차단되어 paclitaxel은 세포주기 특히 Sub-$G_{1}$기를 조절함을 알 수 있다. 그리고 Paclitaxel을 처리한 HeLa $S_{3}$ 세포에서는 PARP cleavage를 유발하였고 Bc1-2의 감소와도 관련되었다.

Keywords

References

  1. Amos, L. A. and J. Lowe. 1999. Tubulin-like protofilaments in ca-induced FtsZ sheets. Chem. Biol. 6, 65-69. https://doi.org/10.1016/S1074-5521(99)89002-4
  2. Arends, M. J. and A. H. Wyllie. 1991. Apoptosis: mechanisms and roles in pathology. Int. Rev. Exp. Pathol. 32, 223-254. https://doi.org/10.1016/B978-0-12-364932-4.50010-1
  3. Bava, S. V., T. V. Puliappadamba, A. Deepti, A. Nair, D. Karunagaran and R. J. Anto. 2005. Sensitization of Taxol-induced Apoptosis by Curcumin Involves Downregulation of Nuclear Factor-B and the Serine/Threonine Kinase Akt and Is Independent of Tubulin Polymerization. J. Bio. Chem. 280, 6301-6308. https://doi.org/10.1074/jbc.M410647200
  4. Benford, H. L., N. W. A. McGowan, M. H. Helfrich, M. E. Nuttall and M. J. Rogers. 2001. Visualization of bisphosphonate-induced caspase-3 activity in apoptotic osteoclasts in vitro. Bone. 28, 465-473. https://doi.org/10.1016/S8756-3282(01)00412-4
  5. Cain, K., D. G. Brown, C. Langlais and G. M. Cohen. 1999. Caspase activation involves the formation of the aposome, a large (approximately 700 kDa) caspase-activating complex. J. Biol. Chem. 274, 22686-22692. https://doi.org/10.1074/jbc.274.32.22686
  6. Crown, J. and M. O'Leary. 2000. The taxanes: an update. Lancet 355, 1176-1178. https://doi.org/10.1016/S0140-6736(00)02074-2
  7. Earnshaw, W. C. 1995. Nuclear Changes in Apoptosis. Curr. Opin. Cell Biol. 7, 337-343. https://doi.org/10.1016/0955-0674(95)80088-3
  8. Fadok, V. A., D. R. Voelker, P. A. Campbell, J. J. Cohen, D. L. Bratton and P. M. Henson. 1992. Exposure of ph osphatidylserine on the surface of apoptotic lymphocytes biggers specific recognition and removal by macrophages. J. Immunol. 148, 2207.
  9. Fink, S. L. and B. T. Cookson. 2005. Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect. Immun. 73, 1907-1916. https://doi.org/10.1128/IAI.73.4.1907-1916.2005
  10. Fischer, U., R. U. Jaicke and Schulze-Osthoff, K. 2003. Many cuts to ruin: a comprehensive update of caspase substrates. Cell Death Differ. 10, 76-100. https://doi.org/10.1038/sj.cdd.4401160
  11. Gavrieli, Y, Y. Sherman and S. A. Ben-Sasson, 1992. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J. Cell Biol. 119(3), 493-501. https://doi.org/10.1083/jcb.119.3.493
  12. Green, D. R. 2000. Apoptotic PathwaysPaper Wraps Stone Blunts Scissors. Cell 102, 1-4. https://doi.org/10.1016/S0092-8674(00)00003-9
  13. Holstein, A. S. and J. H Raymond. 2001. Synergistic Interaction of Lovastatin and Paclitaxel in Human Cancer Cells. Mol. Cancer Thera. 1, 141-149.
  14. Homburg, C. H, M. de Haas, A. E. von dem Borne, A. J. Verhoeven, C. P. Reutelingsperger and D. Roos. 1995. Human neutrophils lose their surface Fc gamma RIII and acquire Annexin V binding sites during apoptosis in vitro. Blood. 85, 532-540.
  15. Hu, Y., M. A. Benedict, L. Ding and G. Nunez. 1999. Role of cytochrome c and dATP/ATP hydrolysis in Apaf-1-mediated caspase-9 activation and apoptosis, EMBO J. 18, 3586-3595. https://doi.org/10.1093/emboj/18.13.3586
  16. Huisman, C., C. G. Ferreira, L. E. Broker, J. A. Rodriguez, E. F. Smit, P. E. Postmus, F. A. Kruyt and G. Giaccone. 2002. Paclitaxel triggers cell death primarily via. caspase-independent routes in the non-small cell lung cancer cell line NCI-. H460. Clin. Cancer Res. 8, 596-606.
  17. Howitz, S. B. 1999. Mechanism of action of taxol. Trends Phamacol. Sci. 13, 134-136. https://doi.org/10.1016/0165-6147(92)90048-B
  18. Jaattela, M. and M. Tschopp. 2003. Caspase-independent cell death in T lymphocytes. Nat. Immunol. 4, 416-423. https://doi.org/10.1038/ni0503-416
  19. Jiang, X. and X. Wang, 2004. Cytochrome C-mediated apoptosis. Annu. Rev. Biochem. 73, 87-106. https://doi.org/10.1146/annurev.biochem.73.011303.073706
  20. Kim, R. 2005. Recent advances in understanding the cell death pathways activated by anticancer therapy. Cancer 103, 1551-1560. https://doi.org/10.1002/cncr.20947
  21. Kohn, E. C., G Sarosy, A. Bicher, C. Link, M. Christian, S. M. Steinberg, M. Rothenberg, D. O. Adamo, P. Davis and F. P. Ognibene. 1994. Dose-intense taxol: high response rate in patients with platinum-resistant recurrent ovarian cancer. J. Natl. Cancer Inst. 86, 18-24. https://doi.org/10.1093/jnci/86.1.18
  22. Kumar, S. and M. F. Lavin. 1996. The ICE family of cysteine proteases as effectors of cell death. Cell Death Differ. 3, 255-267.
  23. Koopman, G., C. P. Reutelingsperger, G. A. M. Kuijten, R. M. J. Keehnen, S. T. Pals and M. H. J. van Oers, 1994. Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 84, 1415-1421.
  24. Krauss, T., A. Huschmand Nia, V. Viereck and G. Emons. 2001. New developments in the treatment of cervical cancer. Onkologie 243, 40-45.
  25. Le, N. T. and D. R. Richardson. 2002. The role of iron in cell cycle progression and the proliferation of neoplastic cells. Biochim. Biophys. Acta. 1603, 31-46.
  26. Leung, M. F., J. A. Sokoloski and A. C. Sartorelli. 1992. Changes in microtubules, microtubule-associated proteins, and intermediate filaments during the differentiation of HL-60 leukemia cells. Cancer Res. 52, 949-954.
  27. Li. P. D., I. Nijhawan, I. Budihardjo, S. M. Srinivasula, M. Ahmad, E. S. Alnemri and X. Wang. 1997. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479-489. https://doi.org/10.1016/S0092-8674(00)80434-1
  28. Mullan, P. B., J. E. Quinn, P. M. Gilmore, S. McWilliams, H. Andrews, C. Gervin, N. McCabe, S. McKenna, P. White, Y. H. Song, S. Maheswaran, E. Liu, D. A. Haber, P. G. Johnston and D. P. Harkin. 2001. BRCA1 regulates the interferon gamma mediated apoptotic response. Oncogene 20, 6123-6131. https://doi.org/10.1038/sj.onc.1204712
  29. Nicholson, D. W. 1992. Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ. 6, 1028-1042. https://doi.org/10.1038/sj.cdd.4400598
  30. Ofir, R., R. Seidman, T. Rabinski, M. Krup, V. Yavelsky, Y. Weinstein and M. Wolfson. 2002. Taxol-induced apoptosis in human SKOV3 ovarian and MCF7 breast carcinoma cells is caspase-3 and caspase-9 independent. Cell Death Differ. 9, 636-642. https://doi.org/10.1038/sj.cdd.4401012
  31. Okahashi, N., M. Koide, E. Jimi, T. Suda and T. Nishihara. 1998. Caspases (interleukin-1beta-converting enzyme family proteases) are involved in the regulation of the survival of osteoclasts. Bone 23, 33-41. https://doi.org/10.1016/S8756-3282(98)00069-6
  32. Peter, M. E. and P. H. Krammer. 2003. The CD95 (APO-1/Fas) DISC and beyond. Cell Death Differ. 10, 26-35. https://doi.org/10.1038/sj.cdd.4401186
  33. Park, S. J., C. H. Wu and D. John. 2004. Gordon Xiaoling Zhong, Armaghan Emami and Ahmad R. Safa. Taxol Induces Caspase-10-dependent Apoptosis. J. Bio. Chem. 279, 51057-51067. https://doi.org/10.1074/jbc.M406543200
  34. Salvesen, G. S. and V. M. Dixit. 1994. Caspase activation: the induced-proximity model. Proc. Natl. Acad. Sci. USA. 96, 10964-10967.
  35. Schulze-Osthoff, K., D. Ferrari, M. Los, S. Wesselborg and M. E. Peter. 1998. Apoptosis signaling by death receptors. Eur. J. Biochem. 254, 439-459. https://doi.org/10.1046/j.1432-1327.1998.2540439.x
  36. Thompson, C. B. Apoptosis in the pathogenesis and treatment of disease. 1995. Science 267, 1456-1462. https://doi.org/10.1126/science.7878464
  37. Yoo, Y. D., J. K. Park, J. Y. Choi, K. H. Lee, Y. K. Kang, C. S. Kim, S. W. Shin, Y. H. Kim and J. S. Kim. 1999. CDK4 down-regulation induced by paclitaxel is associated with G1 arrest in gastric cancer cells. Clin. Cancer Res. 4, 3063-3068.
  38. Vermes, I., C. Haanen, H. Steffens-Nakken and C. Reutelingsperger 1995. Reutelingsperger ANNEXIN V J. Immunol. Meth. 184, 39. https://doi.org/10.1016/0022-1759(95)00072-I
  39. Vikhanskaya, F., S. Vignati, P. Beccaglia, C. Ottoboni, P. Russo, M. D'Incalci and M. Broggini. 1998. Inactivation of p53 in a human ovarian cancer cell line increases the sensitivity to paclitaxel by inducing G2/M arrest and apoptosis, Exp. Cell Res. 241, 96-101. https://doi.org/10.1006/excr.1998.4018
  40. Vorobiof, D. A., B. L. Rapoport, M. R. Chasen, C. Slabber, G. McMichael, R. Eek and C. Mohammed. 2004. First line therapy with paclitaxel (Taxol) and pegylated liposomal doxorubicin (Caelyx) in patients with metastatic breast cancer: a multicentre phase II study. Breast 13, 219-226. https://doi.org/10.1016/j.breast.2004.01.006
  41. Wood, B. L, D. F. Gibson and J. F. Tait. 1996. Increased erythrocyte phosphatidylserine exposure in sickle cell disease: flow-cytometric measurement and clinical associations. Blood. 88, 1873-1880.
  42. Wieder, T., F. Essmann, A. Prokop, K. Schmelz, K. Schulze-Osthoff, R. Beyaert, B. Dorken and P. T. Daniel 2001. Activation of caspase-8 in drug-induced apoptosis of B-lyrnphoid cells is independent of CD95/Fas receptor-ligand interaction and occurs downstream of caspase-3. Blood. 97, 1378-1387. https://doi.org/10.1182/blood.V97.5.1378
  43. Zanetta, G., F. Fei and C. Mangioni. 2000. Chemotherapy with paclitaxel, ifosfamide, and cisplatin for the treatment of squamous cell cervical cancer: the experience of monza, Semin. Oncol. 27, 23-27.