• Title/Summary/Keyword: poly (ethylene glycol)

Search Result 390, Processing Time 0.022 seconds

Effect of Ureas on the Hydrophobic Properties of Aqueous Poly(ethylene oxide) Solutions by Viscometry

  • Sang Il Jeon;Hak-Kyu ChoI;Seung Chang Ra;Byoung Jip Yoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.9
    • /
    • pp.748-751
    • /
    • 1994
  • Poly(ethylene oxide) (PEO) in aqueous solutions has a hydrophobic character which can induce the hydrophobic interaction between its nonpolar parts. The hydrophobic properties of aqueous PEO solutions are studied by the viscometry in terms of the water structure-making and -breaking capabilities of added solutes of ureas. The results show that the contracted conformation of PEO of low molecular weight, namely poly(ethylene glycol) (PEG), does not result from the hydrophobic interaction between the nonpolar parts of PEO but it can participate in a hydrophobic interaction between the nonpolar parts of PEO and added ureas solutes with nonpolar groups, which can induce a large hydrodynamic volume and increase the viscosity. On the other hand, the PEO of large molecular weight seems to behave like any other water soluble polymers with nonpolar parts and its conformation in aqueous solutions is well explained in terms of water structure perturbing capabilities of added ureas.

Drug Release Characteristics of Crosslinked Poly(alkylene oxide) Hydrogels (가교된 폴리 알킬렌 옥사이드 하이드로겔의 약물방출 특성)

  • Kim, Shin-Jeong;Lee, Seung-Jin
    • Journal of Pharmaceutical Investigation
    • /
    • v.21 no.2
    • /
    • pp.91-95
    • /
    • 1991
  • Polyethylene glycol, polypropylene glycol and block copolymer of ethylene glycol and propylene glycol were crosslinked by triisocyanate to form water swellable, rubbery polymer. The equilibrium swelling of the hydrogels ranged from 3% to 60% according to the hydrophobic-hydrophilic properties of the prepolymers. Model drugs, sodium salicylate and prednisolone were incorporated in the polymer matrices by swelling loading. Physical properties of the drugs affected the drug release mechanisms due to the change in the swelling behaviors of the polymeric devices. Zero order release was observed in the case of relatively hydrophobic polymer matrices.

  • PDF

Photolithographic Fabrication of Poly(Ethylene Glycol) Microstructures for Hydrogel-based Microreactors and Spatially Addressed Microarrays

  • Baek, Taek-Jin;Kim, Nam-Hyun;Choo, Jae-Bum;Lee, Eun-Kyu;Seong, Gi-Hun
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.11
    • /
    • pp.1826-1832
    • /
    • 2007
  • We describe the fabrication of poly(ethylene glycol) diacrylate (PEG-DA) hydrogel microstructures with a high aspect ratio and the use of hydrogel microstructures containing the enzyme ${\beta}$-galactosidase (${\beta}$-Gal) or glucose oxidase (GOx)/horseradish peroxidase (HRP) as biosensing components for the simultaneous detection of multiple analytes. The diameters of the hydrogel microstructures were almost the same at the top and at the bottom, indicating that no differential curing occurred through the thickness of the hydrogel microstructure. Using the hydrogel microstructures as microreactors, ${\beta}$-Gal or GOx/HRP was trapped in the hydrogel array, and the time-dependent fluorescence intensities of the hydrogel array were investigated to determine the dynamic uptake of substrates into the PEG-DA hydrogel. The time required to reach steady-state fluorescence by glucose diffusing into the hydrogel and its enzymatic reactions with GOx and HRP was half the time required for resorufin ${\beta}$-D-galactopyranoside (RGB) when used as the substrate for ${\beta}$-Gal. Spatially addressed hydrogel microarrays containing different enzymes were micropatterned for the simultaneous detection of multiple analytes, and glucose and RGB solutions were incubated as substrates. These results indicate that there was no cross-talk between the ${\beta}$-Gal-immobilizing hydrogel micropatches and the GOx/HRP-immobilizing micropatches.

Partition Coefficient of Proteins of Different Surface Hydrophobicity in Poly (ethylene glycol)-Dextran Aqueous Two Phase System (Poly(ethylene glycol)-Dextran 수용액 2상계에서 단백질들의 소수성에 따른 분획계수)

  • Lee, Sam-Pin;Lee, Cherl-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.140-145
    • /
    • 1987
  • The partition coefficient of the proteins of known effective hydrophobicity was determined in a poly (ethylene glycol)-dextran aqueous two-phase system. The changes in the partition coefficient was also determined when a fraction of PEG-palmitate (PEG-P) was added to the system. The partition coefficient of the proteins increased as the concentrations of PEG and dextran increased at a constant phase volume ration irrespective of the effective hydrophobicity of the proteins. When small amounts of PEG-P were added to the PEG phase, the partition coefficients of BSA and ${\beta}-lactoglobulin$, which had relative hydrophobicity (RI) of 700 and 120, respectively, increased more than ten-fold, whereas ovalbumin whose RI was 5 showed little change. The drastic increases m the partition coefficient were observed by the addition of PEG-P in 2% level to the PEG system. Addition of PEG-P over 5% level resulted in a slight further increase in the partition coefficient of all proteins tested.

  • PDF

Self-Organization of Dendron-Poly(ethylene glycol) Conjugates in an Aqueous Phase

  • Kim, Kyoung-Taek;Lee, Im-Hae;Park, Chiyoung;Song, Yu-Mi;Kim, Chul-Hee
    • Macromolecular Research
    • /
    • v.12 no.5
    • /
    • pp.528-533
    • /
    • 2004
  • We have prepared amide dendrons having alkyl peripheral units and various focal moieties through a convergent synthetic approach. The amphiphilic properties, due to hydrophilic amide branches and the hydrophobic peripheral units, provide an opportunity for the amide dendrons to self-organize in water. The dendritic architecture itself is also one of the critical factors in the self-organization of the amide dendrons in water. In particular, function-alization was performed at the focal point to elucidate the relationship between the focal functionality and the self-organized structures of the dendritic building blocks in the aqueous phase. The dendron having a short poly(ethylene glycol) monomethyl ether (MeO-PEG) unit (M$\_$n/ =750) as the focal moiety formed a vesicular organization in water. As the size of the hydrophilic focal MeO-PEG increased to M$\_$n/ =2,000 and 5,000, the self-organized structures became rod-type and spherical micelles, respectively. Our observation of multiple morphologies for amide dendrons is in good agreement with previous reports that indicated that the micellar structures changed from vesicles to rod-types and then to spheres upon increasing the size of the hydrophilic moiety of the amphiphiles.

Solubility and Physicochemical Stability of Ondansetron Hydrochloride in Various Vehicles (용제 중 염산온단세트론의 용해성 및 안정성)

  • Gwak, Hye-Sun;Oh, Ik-Sang;Chun, In-Koo
    • Journal of Pharmaceutical Investigation
    • /
    • v.33 no.1
    • /
    • pp.45-49
    • /
    • 2003
  • The solubility and stability of ondansetron hydrochloride (OS) in various vehicles were determined. The effect of cyclodextrins (CD) on the solubility of OS in water was determined by equilibrium solubility method. The solubility of OS at $32^{\circ}C$ increased in the rank order of isopropyl myristate (IPM) < propylene glycol laurate (PGL) ${\ll}$ propylene glycol monolaurate < propylene glycol monocaprylate (PGMC) < poly(ethylene glycol) 400 < diethylene glycol mono ethyl ether (DGME) < ethanol < poly(ethylene glycol) 300 < water (36.1 mg/ml) ${\ll}$ propylene glycol (PG) (283 mg/ml). The addition of PG or DGME to non-aqueous vehicles such as IPM, PGL and PGMC markedly increased the solubility of OS. The addition of CDs in water increased the solubility. Apparent stability constant for the CD complexation with OS was calculated to be $25.5\;M^{-1}$ for $2-hydroxypropyl-{\beta}-CD\;(2HP{\beta}CD)$. Twenty mM ${\beta}-CD$, 69.4 mM sulfobutyl ether ${\beta}-CD$ and 115.4 mM $2HP{\beta}CD$ increased the aqueous solubilty of OS 1.27, 2.18 and 1.85 times, respectively. OS was stable in buffered aqueous solution (pH 5.0). However, OS was relatively unstable in non-aqueous vehicles in the order of PG

Phase-Separation Properties of Poly(Ethylene Glycol) had Dextran Solutions In Microfluidic Device (미세 유체장치 내에서 Poly(Ethylene Glycol)과 Dextran 용액의 상 형성 특성 연구)

  • Choi, Joo-Hyung;Chang, Woo-Jin;Lee, Sang-Woo
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.2
    • /
    • pp.244-249
    • /
    • 2007
  • Fluidic conditions for the separation of phases were surveyed in a microfluidic aqueous two-phase extraction system. The infusion ratio between polyethylene glycol (PEG) and dextran solution defines the concentrations of each polymer in micro-channel, which determine the phase-separation. The appropriate ratio between PEG (M.W. 8000, 10%, w/v) and dextran T500 (M.W. 500000, 5%, w/v) in order to perform the separation of phases of both polymers was observed as changing the mixed ratio of both polymers. Based on the fluidic conditions, stable two-phase solutions were obtained within 4% to 8% and 3% to 1% of PEG and dextran, respectively. In addition, the characteristics of the two-phase were discussed. The separation technique studied in the paper can be applied for the implementation of a lab-on-a chip which can detect various biological entities such cells, bacterium, and virus in an integrated manner using built in a biosensor inside the chip.

Preparation of Poly(propylene) Membrane Supported Gel Electrolyte Membranes for Rechargeable Lithium Ion Batteries through Thermal Polymerization of Di(ethylene glycol) Dimethacrylate (Di(ethylene glycol) Dimethacrylate의 열중합에 의한 Poly(propylene) 분리막으로 지지한 리튬이온 이차전지의 겔 전해질막 제조)

  • Yun, Mi-Hye;Kwon, So-Young;Jung, Yoo-Young;Cho, Doo-Hyun;Koo, Ja-Kyung
    • Membrane Journal
    • /
    • v.20 no.3
    • /
    • pp.259-266
    • /
    • 2010
  • Porous poly(propylene) supported gel polymer electrolytes (GPE) were synthesized by thermal polymerization of DEGDMA [Di(ethylene glycol) dimethacrylate] in electrolyte solutions (1 M solution of $LiPF_6$ in EC/DEC 1 : 1 mixture) at $70^{\circ}C$. AC impedance spectroscopy and cyclic voltammetry were used to evaluate its ionic conductivity and electrochemical stability window of the GPE membranes. Lithium ion battery (LIB) cells were also fabricated with $LiNi_{0.8}Co_{0.2}O_2$/graphite and GPE membranes via thermal polymerization process. Through the thermal polymerization, self sustaining GPE membranes with sufficient ionic conductivities (over $10^{-3}\;S/cm$) and electrochemical stabilities. The LIB cell with 5% monomer showed the best rate-capability and cycleability.

Preparation of UV Curable Gel Polymer Electrolytes and Their Electrochemical Properties

  • Oh, Boo-Keun;Jung, Won-Il;Kim, Dong-Won;Rhee, Hee-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.5
    • /
    • pp.683-687
    • /
    • 2002
  • We have investigated the effect of the number of ethylene oxide (EO) units inside poly(ethylene glycol)dimethacrylate (PEGDMA) on the ionic conductivity of its gelled polymer electrolyte, whose content ranges from 50 to 80 wt%. PEGDMA gelled polym er electrolytes, a crosslinked structure, were prepared using simple photo-induced radical polymerization by ultraviolet light. The effect of the number of EO on the ionic conductivity was clearly shown in samples of lower liquid electrolyte content. We have concluded that the ionic conductivity increased in proportion to both the number of EO units and the plasticizer content. We have also studied the electrochemical properties of 13PEGDMA (number of EO units is 13) gelled polymer electrolyte.

Effect of nitrogen doping on properties of plasma polymerized poly (ethylene glycol) film

  • Javid, Amjed;Long, Wen;Lee, Joon S.;Kim, Jay B.;Sahu, B.B.;Jin, Su B.;Han, Jeon G.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.286-288
    • /
    • 2014
  • This study deals with the catalyst free radio frequency plasma assisted polymerization of ethylene glycol using nitrogen as reactive gas to modify the surface chemistry and morphology. The deposited film was characterized through various analysis techniques i.e. surface profilometry, Forier transform infrared spectroscopy, water contact angle and UV-visible spectroscopy to analyze film thickness, chemical structure, surface energy and optical properties respectively. The surface topography was analyzed by Atomic force microscopy. It was observed that the ethylene oxide behaviour and optical transmittance of the film were reduced with the introduction of nitrogen gas due to higher fragmentation of monomer. However the hydrophilic behavior of the film improved due to formation of new water loving functional groups suitable for biomedical applications.

  • PDF