• Title/Summary/Keyword: poly (acrylonitrile)

Search Result 110, Processing Time 0.023 seconds

Kinetics of Thermal Degradation of Waste styrene compound and Paper Sludge Blend (폐 스티렌계수지와 제지슬럿지 Blend의 열분해에 관한 연구)

  • Seul, Soo-Duk;Kim, Nam-Seok;Wang, Seok-Ju;Na, Sang-Do
    • Elastomers and Composites
    • /
    • v.30 no.2
    • /
    • pp.105-111
    • /
    • 1995
  • The thermal decomposition of the paper sludge with poly (acrylonitrile-butadiene-styrene) was using a thermal analysis techniques in the stream of nitrogen gas of 30ml/min at various heating rates from 4 to $20^{\circ}C/min$. The mathmatical, derivative and integral method were used to obtain values of activation energy of decomposition reaction. 1. The values of activation energy evaluated by derivative and Intergral method were consistent with each other very well. 2. The maximum value of heat of decomposition evaluated by DSC method was 10.120cal/g at weight ratio of paper sludge/ABS=20/80. 3. The thermogravimetric trace curve agreed with the theoretical equation.

  • PDF

Synthesis of a Novel Nitrogen-Phosphorus Flame Retardant Based on Phosphoramidate and Its Application to PC, PBT, EVA, and ABS

  • Nguyen, Congtranh;Kim, Jin-Hwan
    • Macromolecular Research
    • /
    • v.16 no.7
    • /
    • pp.620-625
    • /
    • 2008
  • A novel nitrogen-phosphorus compound, diphenyl piperazine-1,4-diylbis(methylphosphinate)(DPPMP) was synthesized via a two step reaction and its flame retarding efficiency as a single component additive was investigated. The success of synthesis was confirmed by FTIR and $^1H$ and $^{31}P$ NMR analysis. The product was mixed with polycarbonate (PC), poly(butylene terephtalate) (PBT), ethylene-vinyl-acetate copolymer (EVA), and acrylonitrile-butadiene-styrene copolymer (ABS). The flame-retarding efficiency was evaluated using the limiting oxygen index (LOI) and the UL-94 vertical test methods. The addition of DPPMP enhanced the flame retardancy of the polymers and the V-0 ratings were obtained for the polymers examined in this study at a loading of 7-30 wt%. The gas-phase flame retardancy mode of action was suggested for this material from the thermogrametry experiment results.

Polymerization of Methyl Methacrylate with Phenylsilane

  • 유희권;박선희;박진영;양수연;함희숙;김환기
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.4
    • /
    • pp.373-376
    • /
    • 1996
  • The bulk thermal and photopolymerization of methyl methacrylate(MMA) with phenylsilane were performed to produce poly(MMA)s containing phenylsilyl moiety presumably as an end group. It was found for both thermal and photopolymerization that while the polymerization yields and polymer molecular weights decreased as the relative phenylsilane concentration increases, the TGA residue yields and the relative intensities of SiH IR stretching bands increased with increasing molar ratio of phenylsilane over MMA. The polymerization yield, molecular weight, and TGA residue yield for the thermal polymerization were higher than those for the photopolymerization. Thus, the phenylsilane seemed to significantly influence on the polymerization as both chain initiation and chain transfer agents. However, an appreciable silane effect was not observed on the thermal and photopolymerization of 4-vinylpyridine, acrylonitrile, styrene, and vinyltrimethoxysilane.

Effect of Carbon-based Nanofillers on the Toughening Behavior of Epoxy Resin

  • Lee, Gi-Bbeum;Kim, Haeran;Shin, Wonjae;Jeon, Jinseok;Park, In-Seok;Nah, Changwoon
    • Elastomers and Composites
    • /
    • v.56 no.3
    • /
    • pp.179-186
    • /
    • 2021
  • Carbon-based nanofillers, including nanodiamond (ND) and carbon nanotubes (CNTs), have been employed in epoxy matrixes for improving the toughness, using the tow prepreg method, of epoxy compounds for high pressure tanks. The reinforcing performance was compared with those of commercially available toughening fillers, including carboxyl-terminated butadiene acrylonitrile (CTBN) and block copolymers, such as poly(methyl methacrylate)-b-poly(butyl acrylate)-b-poly(methyl methacrylate) (BA-b-MMA). CTNB improved the mechanical performance at a relatively high filler loading of ~5 phr. Nanosized BA-b-MMA showed improved performance at a lower filler loading of ~2 phr. However, the mechanical properties deteriorated at a higher loading of ~5 phr because of the formation of larger aggregates. ND showed no significant improvement in mechanical properties because of aggregate formation. In contrast, surface-treated ND with epoxidized hydroxyl-terminated polybutadiene considerably improved the mechanical properties, notably the impact strength, because of more uniform dispersion of particles in the epoxy matrix. CNTs noticeably improved the flexural strength and impact strength at a filler loading of 0.5 phr. However, the improvements were lost with further addition of fillers because of CNT aggregation.

Effects of Compatibilizer and Graphene Oxide on the Impact Strength of PC/ABS Blend (PC/ABS의 충격강도에 미치는 상용화제와 그래핀 옥사이드의 영향)

  • Park, Ju Young;Lee, Bom Yi;Cha, Hye Jin;Kim, Youn Cheol
    • Applied Chemistry for Engineering
    • /
    • v.26 no.2
    • /
    • pp.173-177
    • /
    • 2015
  • In this study, effects of both the grafted ABS-g-MAH and the added graphene oxide (GO) on the impact strength of polycarbonate (PC)/poly(acrylonitrile-butadiene-styrene) (ABS) blends were discussed. The PC/ABS blends and PC/ABS/GO composites were fabricated by using twin screw extruder with ABS-g-MAH as a compatibilizer. The ABS-g-MAH was prepared by melting extrusion of ABS and maleic anhydride (MAH) with DCP (dicumyl peroxide) as an initiator using twin screw extruder and the synthesis of ABS-g-MAH was confirmed by the presence of carbonyl group (C=O) peak at $1780cm^{-1}$ of FT-IR spectrum. According to the thermal, rheological, and impact properties of PC/ABS blends, 5 phr (parts per hundred resin) of compatibilizer was chosen as an optimum content for the PC/ABS/GO composites. It was observed that the thermal decomposition of ABS/PC/GO composites increased with GO contents, but there was no significant changes or a decrease in the impact strength. Also the composite fabricated by ABS/GO showed small increase in the impact strength. From the result of the dynamic rheometer to observe the processing properties, the complex viscosities of PC/ABS blend including the compatibilizer increased, but the complex viscosities of composites added GO were not changed.

Preparations of PAN-based Activated Carbon Nanofiber Web Electrode by Electrostatic Spinning and Their Applications to EDLC (정전방사에 의한 PAN계 활성화 탄소 나노섬유 전극 제조와 EDLC 응용)

  • Kim, Chan;Kim, Jong-Sang;Lee, Wan-Jin;Kim, Hyung-Sup;Edie, Dan D.;Yang, Kap-Seung
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.3
    • /
    • pp.117-124
    • /
    • 2002
  • Poly(acrylonitrile)(PAN) solutions in dimethylformamide(DMF) were electrospun to prepare webs consisting of 400nm ultra-fine fibers. The webs were oxidatively stabilized, activated by steam and resulted to be activated carbon fibers(ACFs). The specific surface area was $800\~1230 m^2/g$, which showed a trend of a decrease of the surface area with an increase in activation temperature, showing opposite behavior to the other ACFs. The activation energy of the stabilized fibers for the steam activation was determined as 29.2 kJ/mol to be relatively low indicating the easier activation than that of other carbonized fibers. The ACF webs were characterized by pore size and specific surface uea which would be related to the specific capacitance of the electrical double layer capacitor (EDLC). The specific capacitances measured were 27 F/g, 25 F/g, 22 F/g at the respective activation temperature of $700^{circ}C,\;750^{\circ}C\;800^{\circ}C$, showing similar trend with the specific surface area i.e., the higher activation temperature was, the lower specific capacitance resulted.

Effect of Preparation Conditions of PAN-based Carbon Fibers on Electrochemical Characteristics of Rechargeable Lithium ion Battery Anode (PAN계 탄소섬유 제조조건에 따른 리튬이온 이차전지 음극의 전기화학적 특성)

  • An K. W.;Lee J. K.;Lee S. W.;Kim Y. D.;Cho W. I.;Ju J. B.;Cho B. W.;Park D. G.;Yun K. S.
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.2
    • /
    • pp.81-87
    • /
    • 1999
  • Poly-acrylonitrile (PAN) based carbon fibers were stabilized under various tensions in the presence of air at about $200^{\circ}C$ and sequentially carbonized under some different gas environments in the range of 700 to $1500^{\circ}C$. The prepared carbon fibers were used for rechargeable lithium ion battery anode to investigate preparation parameters effects on electrochemical characteristics. It was found that the tension during stabilization, carbonization temperature and gas atmospheres affect the carbon fiber properties such as conductivity, mechanical strength, surface morphology and diffusion coefficient of lithium ion, which are closely related to the on electrolchemical properties as well as the charge/discharge characteristics.

Selective Permeate Transport Characteristics of Iodine ion at Cell Membrane Model of Thyroid which Irradiated by High Energy X-Ray (고에너지 엑스선을 조사한 갑상선의 세포막모델에서 요오드이온의 선택적 투과성 전달 특성)

  • Ko, In-Ho;Yeo, Jin-Dong
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.2
    • /
    • pp.229-238
    • /
    • 2021
  • The selective permeate transport characteristics of iodine ion at follicle cell membrane model in thyroid which irradiated by high energy x-ray(linac 6 MV) was investigated. The follicle cell membrane model used in this experiment was a polysulfonated copolymerized membrane of poly(4-vinylpyridine-co-acrylonitrile:VP-AN). The difference of membrane thickness [2 mole AN%(w/w)], fixed carrier concentration[VP-AN%(w/w)], OH- concentration were occurred at difference of I- concentration and quantity of thyroid hormone, respectively. The tensile strength in fixed carrier concentration[VP-AN% (w/w): 0-62 %] of irradiated membrane was found to be decreased about 1.2-1.8 times than non-irradiated membrane. The I- selective permeate initial flux with increase of membrane thickness [2mole AN%(w/w)], fixed carrier concentration[VP-AN%(w/ w)], OH- concentration in irradiated membrane were found to be decreased about 2.1-4.5 times, about 2.2-2.5 times, about 2.1-2.67 times than non-irradiated membrane, respectively. As a result, the quantity of thyroid hormone was decreased at irradiated membrane than non-irradiated membrane. The decrease of thyroid hormone was occurred at hypothyroidism and hyperthyroidism, thyroid cancer, and so on. As the thyroid hormone in cell membrane model were abnormal, cell damages were appeared at cell.

Polyacrylonitrile based Copolymer Synthesis and Precursor Fiber Spinning for Manufacturing High-performance Carbon Fiber (고성능 탄소섬유 제조를 위한 폴리아크릴로니트릴 기반 공중합 고분자 합성 및 전구체 섬유 방사)

  • Ju, Hyejin;Han, Minjung;Song, Kyunghyun;Jeon, Changbeom;Jeong, Hwakyung;Kim, Min Jeong;Chae, Han Gi
    • Composites Research
    • /
    • v.35 no.2
    • /
    • pp.115-119
    • /
    • 2022
  • The performance of carbon fiber is important for the production of these high-quality polymer composite materials such as CFRP (Carbon Fiber Reinforced Plastic). For this purpose, it is essential to use an optimized spinning process for improving the mechanical, physical, and structural properties of the precursor fiber, which greatly affects the properties of the carbon fiber, and the use of a suitable precursor polymer. In this study, the content of MAA (Methacrylic Acid), MAA injection time, and concentration of AIBN (2,2'-Azobis(2-methylpropionitrile)) were set as parameters for the polymer synthesis process, and Poly(AN-co-MAA) (poly(acrylonitrile-co-methacrylic acid)) was polymerized by solution polymerization. Poly(AN-co-MAA) with a molecular weight of 305,138 g/mol and an MAA ratio of 4.2% was dissolved in DMF (N,N-dimethylformamide) at a concentration of 16.0 wt%, and then a precursor fiber was prepared through dry-jet-wet spinning. The precursor fiber had a tensile strength of ~1.06 GPa and a tensile modulus of ~22.01 GPa, and no voids and structural defects were observed on the fiber.

Effect of Co-agent on Cure, Mechanical Properties of NBR Compounds in Peroxide System

  • Seo, Eun Ho;Kim, Gi Hong;Kim, Do Young;Lee, Dong Won;Seo, Kwan Ho
    • Elastomers and Composites
    • /
    • v.52 no.3
    • /
    • pp.187-193
    • /
    • 2017
  • In this study, the effect of the cure, mechanical properties, and oil resistance of NBR (acrylonitrile-butadiene rubber)/peroxide compounds were investigated for various co-agents. NBR compounds were characterized using a swelling test, a rheometer (MDR), and a compression set test. Mechanical properties were tested with original compounds, heated in air and exposed to the ASTM No.1, IRM 903 oil. NBR compounds were prepared using peroxide as the crosslinking agent. Trimethylolpropane trimethacrylate (TMPTMA), triallyl isocyanurate (TAIC), and 1,2-polybutadiene (HVPBD) were used as co-agents. The NBR compounds containing TMPTMA and HVPBD lowered the scorch time, while the addition of TAIC did not significantly change the scorch time. NBR compounds containing TMPTMA increased the crosslinking density, while the addition of TAIC and HVPBD lowered the crosslinking density. Moreover, the addition of TMPTMA improved the oil resistance of the NBR compound.