• Title/Summary/Keyword: poly(styrene-co-divinylbenzene)

Search Result 9, Processing Time 0.023 seconds

Effect of Co-initiator on the Size Distribution of the Stable Poly(Styrene-co-Divinylbenzene) Microspheres in Acetone/Water Mixture

  • Choi, Jin-Young;Lee, Kang-Seok;Lee, Byung-Hyung;Choe, Soon-Ja
    • Macromolecular Research
    • /
    • v.17 no.7
    • /
    • pp.483-490
    • /
    • 2009
  • Stable poly(styrene-co-divinylbenzene) [P(St-co-DVB)] micro spheres with narrow size distribution were synthesized in the presence of 2,2'-azobis(2,4-dimethyl valeronitrile) (V-65) and co-initiator in an acetone/water mixture in the precipitation polymerization at $53^{\circ}C$ for 24 h. Potassium peroxodisulfate (KPS), ammonium peroxodisulfate (APS) and sodium peroxodisulfate (NaPS) were used as co-initiators. The optimum ratio of acetone to water for the formation of a narrow distribution of P(St-co-DVB) particles was 49:11 (g/g). The optimum co-initiator compositions for narrow distribution were 9:1 (g/g) for V-65 to KPS, 11:1 for V-65 to APS and 6:1 for V-65 to NaPS. The yield for these compositions was $54{\sim}57%$ and the largest particle size was obtained with the lowest zeta-potential and CV values. From the XPS measurements, the charge density was increased but the zeta potential decreased with increasing sulfur content, implying that the sulfate group provides the electrostatic stabilization on the particle surface. This suggested that the self-crosslinking between styrene and DVB, the electrostatic stabilization of initiators, and the balanced hydrophobic and hydrophilic properties of the solvents are responsible for the formation of stable P(St-co-DVB) spherical particles with narrow size distribution.

Preparation of Colored Electrophoretic Nanoparticles by Emusifier-Free Emulsion Polymerization and Reactive Dyeing (무유화 에멀젼 공중합법과 반응염법을 이용한 전기영동 고분자 컬러나노입자의 제조)

  • Chon, Jin-A;Ha, Jae-Hee;Lim, Min-Ho;Kwon, Yong-Ku
    • Polymer(Korea)
    • /
    • v.34 no.6
    • /
    • pp.491-494
    • /
    • 2010
  • Colored, electrophoretic polymer nanoparticles of poly (styrene-co-divinylbenzene-co-vinyl acetate)[poly(St-co-DVB-co-VAc)] were prepared by emulsifier-free emulsion co-polymerization and reactive dyeing. The emulsifier-free emulsion polymerization of styrene, divinyl benzene and vinyl acetate was carried out at $70^{\circ}C$ for 20 hrs to obtain monodisperse polymer nanoparticles of poly(St-co-DVB-co-VAc) with an average diameter of 180~200 nm. These nanoparticles were transformed into poly(styrene-co-divinylbenzene-co-vinyl alcohol) [poly(St-co-DVB-co-VA)] nanoparticles through the saponification reaction. The poly(St-co-DVB-co-VA) nanoparticles were treated with reactive dyes to obtain the colored, monodisperse electrophoretic nanoparticles, and their morphology and surface charge were characterized by scanning electron microscopy, differential scanning calorimetry, UV/Vis absorbance and zeta-potentiometry.

Synthesis of Sulfonated Poly(styrene-co-DVB) Hyper Branched Cationic Exchange Resin and Its Properties (하이퍼브랜치 Poly(styrene-co-DVB) 설폰화 양이온교환 수지의 합성 및 특성)

  • Baek, Ki-Wan;Yeom, Bong-Yeol;Hwang, Taek-Sung
    • Polymer(Korea)
    • /
    • v.32 no.1
    • /
    • pp.43-48
    • /
    • 2008
  • In this study, the hyper branched poly (styrene-co-divinylbenzene) (PSD) was synthesized by bulk polymerization and the cationic exchanger with high ion exchange capacity was prepared by sulfonation. The structure of hyper branched PSD ion exchanger was investigated by FT-IR, $^1H-NMR$ spectroscopy, and GPC analysis. The molecular weight, viscosity of hyper branched PSD increased with DVB content, which have the maximum values of 9410g/mol and 338 cP, respectively. And the reaction rate also increased with cross-linker content. As DVB content increased, the solubility of PSD decreased having the maximum value of 22 g with 0.1 mol% DVB. The water content and ion exchange capacity of the hyper branched PSD ion exchanger increased with the amount of sulfuric group. Their maximum values were 18.2% and 4.6 meq/g, respectively. The adsorption of copper and nickel ion was completed within 40 min.

Synthesis and Characterization of Chelating Resins Containing Thiol Croups (티올기를 함유하는 킬레이트 수지의 합성 및 특성)

  • 박인환;방영길;김경만;주혁종
    • Polymer(Korea)
    • /
    • v.27 no.4
    • /
    • pp.330-339
    • /
    • 2003
  • Three kinds of macro-reticular bead-typed chelating resins having thiol groups were obtained from basic resins like poly(strene-co-divinylbenzene) (PSD) and poly(styrene-co-methyl methacrylate-co-divinylbenzene) (PSMD): the chelating resin (I) was prepared by chloromethylation of phenyl rings of PSD followed by thiolation using thiourea. The chelating resin (ll) was designed to provide enough space to chelate heavy metal ions; one chloromethyl group was obtained by chlorination of hydroxymethyl group provided by reduction of carboxylic ester group of PSMD and another chloromethyl group was obtained by direct chloromethylation of pendent phenyl group using chloromethyl methyl ether. Both of chloromethyl groups were thiolated by using thiourea. The chelating resin (III) was prepared by chlorosulfonation of phenyl rings of PSD followed by thiolation using sodium hydrosulfide. The adsorbtivity toward heavy metal ions was evaluated. The hydrophobic chelating resin (I) with thiol groups showed highly selective adsorption capacity f3r mercury ions. However, the chelating resin (II) with thiol groups showed mere effective adsorption capacity toward mercury ions than chelating resin (I) with thiol groups, and showed some adsorption capacity for other heavy metal ions like Cu$\^$2+/, Pb$\^$2+/, Cd$\^$2+/ and Cr$\^$3+/. On the other hand, the chelating resin (III) which have hydrophilic thiosulfonic acid groups was found to be effective adsorbents for some heavy metal ions such as Hg$\^$2+/, Cu$\^$2+/, Ni$\^$2+/, Co$\^$2+/, Cr$\^$3+/ and especially Cd$\^$2+/ and Pb$\^$2+/.

The Variation of Surface Area in Porous Poly(Styrene-co-Divinylbenzene) Resin Beads (다공성 스티렌-디비닐벤젠 공중합 수지입자의 표면적 변화)

  • Kim, Yong-Man;Ihm, Son-Ki;Kim, Jong-Chan;Lee, Dong-Keun;Ahn, Jou-Hyeon
    • Applied Chemistry for Engineering
    • /
    • v.7 no.5
    • /
    • pp.843-848
    • /
    • 1996
  • Porous resin beads of Poly(styrene-co-divinylbenzene) have been prepared by suspension polymerization. The bead could be made porous in the region above 30wt% of the crosslinking agent(divinylbenzene ) and the porogenic agent(toluene), respectively. The specific surface area of porous beads increased with increasing the concentrations of divinylbenzene and toluene. The specific surface area of the porous resin bead decreased, when sulfonated with concentrated sulfuric acid. The catalytic activity of sulfonated resin catalyses increased with increasing the degree of crosslinking in the liquid-phase reesterification of ethyl acetate with 1-propanol. The adsorbed quantity of sodium dodecylbenzene sulfonate in an aqueous solution also increased with increasing surface area of porous resins.

  • PDF

Effect of Adding Crosslinked Particles on Rheological and Electrical Properties of Polystyrene/Carbon Nanotube Nanocomposites (가교 입자 첨가가 폴리스티렌/탄소나노튜브 나노복합재료의 유변물성 및 전기적 물성에 미치는 영향)

  • Yeom, Hyo Yeol;Na, Hyo Yeol;Lee, Seong Jae
    • Polymer(Korea)
    • /
    • v.38 no.6
    • /
    • pp.767-773
    • /
    • 2014
  • Rheological and electrical properties of polystyrene (PS)/carbon nanotube (CNT) nanocomposites via coagulated precipitation were investigated. Chemical modification and surfactant wrapping of CNT to improve the dispersion of CNTs may reduce the intrinsic properties of pristine CNT. To avoid this problem, PS and CNTs were dissolved and dispersed in dimethylformamide and then PS/CNT nanocomposites were prepared by the coagulated precipitation of CNT-dispersed PS solution in water. The coagulated precipitation method was highly effective enhancing the electrical conductivity of nanocomposites. Furthermore, the effect of adding poly(styrene-co-divinylbenzene) crosslinked particles to PS matrix on the rheological and electrical properties was investigated. With the addition of the crosslinked particles, the electrical percolation threshold of CNT reduced to 0.25 wt% and electrical conductivity increased further. It is speculated that CNTs in the volume occupied by crosslinked particles helped electrical pathway formation.

Preparation and Separation Properties of Polymer Gel for Chromatography (크로마토그래피용 고분자 겔의 제조 및 분리특성)

  • Kim, Kong-Soo;Kang, Seog-Ho;Park, Myung-Hwan;Lee, Sang-Ho
    • Applied Chemistry for Engineering
    • /
    • v.5 no.6
    • /
    • pp.1009-1015
    • /
    • 1994
  • Monodisperse porous poly(styrene-co-divinylbenzene)(St-DVB) gel and poly(acrylonitrile-co-ethylene dimethacrylate)(AN-EDMA) gel have been prepared by seed polymerization using polystyrene seeds, which were prepared by dispersion polymerization. The St-DVB and AN-EDMA gels had a narrow size distribution and pores suitable for packing materials of HPLC. The columns packed with these gels were proved to have high efficiency for GPC or HPLC coluuns. Adsorption properties of $Cu^{2+}$, $Cd^{2+}$ and ${UO_2}^{2+}$ ions on AAN-EDMA gel prepared from amidoximation of AN-EDMA gel were also determined.

  • PDF

The Preparation and Electrochemical Properties of Pore-filled and Polystyrene-based Anion-exchange Membranes Using Poly(ethylene glycol)methyl Ether Methacrylate (Poly(ethylene glycol)methyl Ether Methacrylate를 이용한 세공충전 폴리스티렌계 음이온 교환막의 제조 및 전기화학적 특성)

  • Mun, Hye Jin;Choi, Jae Hak;Hong, Young Taik;Chang, Bong Jun
    • Membrane Journal
    • /
    • v.25 no.6
    • /
    • pp.515-523
    • /
    • 2015
  • While commercial polystyrene-based ion exchange membranes have simple manufacturing processes, they also possess poor durability due to their brittleness. Poly(ethylene glycol)methyl ether methacrylate with hydrophilic side chains of poly(ethylene glycol) was used as a co-monomer to make the membranes have improved flexibility. Hydrophilicity/hydrophobicity of the anion exchange membranes were able to be adjusted by varying the chain lengths of the poly(ethylene glycol). For the preparation of the anion exchange membranes, a porous PE substrate was immersed into monomer solutions and thermally polymerized. The prepared membranes were subsequently reacted with trimethylamine to produce anion exchange functional groups, Quaternary ammonium salts. The prepared pore-filled anion exchange membranes were evaluated in terms of ion exchange capacity, electric resistance, elongation at break and water uptake.

Preparation of Monodispersed Crosslinked Polymer Beads (단분산상으로 가교된 고분자 비드의 합성)

  • 심상은;변재만;전종원;차윤종;최순자
    • Polymer(Korea)
    • /
    • v.24 no.3
    • /
    • pp.287-298
    • /
    • 2000
  • In preparing micron-sized monodisperse polystyrene beads by dispersion polymerization, the conversion, and the particle size and its distribution were affected by the reaction temperature, concentration of the monomer, solvent and initiator, molecular weight and concentration of the steric stabilizer, amount of oxygen existing in the reactor, and an appropriate combination of these starting materials. Ethanol as a dispersing agent, styrene as a monomer, PVP as a steric stabilizer, AIBN as an initiator, DVB as a cross-linking agent and toluene as a co-solvent were the basic materials for the synthesis. The reaction rate and the conversion were increased with the reaction temperature and the amount of DVB from 1 to 4%, and the conversion was saturated after 10 hours of the reaction time. The optimum reaction recipe for the preparation of the monodisperse PS beads was 25% styrene monomer, 0.5% DVB, 25% toluene, 10-15% PVP, and 2 and 4% AIBN, thereby, 3.9~4 ${\mu}{\textrm}{m}$ and 3.4~9.3 ${\mu}{\textrm}{m}$ of polystyrene beads, respectively, were successfully synthesized.

  • PDF