Browse > Article
http://dx.doi.org/10.7317/pk.2014.38.6.767

Effect of Adding Crosslinked Particles on Rheological and Electrical Properties of Polystyrene/Carbon Nanotube Nanocomposites  

Yeom, Hyo Yeol (Department of Polymer Engineering, The University of Suwon)
Na, Hyo Yeol (Department of Polymer Engineering, The University of Suwon)
Lee, Seong Jae (Department of Polymer Engineering, The University of Suwon)
Publication Information
Polymer(Korea) / v.38, no.6, 2014 , pp. 767-773 More about this Journal
Abstract
Rheological and electrical properties of polystyrene (PS)/carbon nanotube (CNT) nanocomposites via coagulated precipitation were investigated. Chemical modification and surfactant wrapping of CNT to improve the dispersion of CNTs may reduce the intrinsic properties of pristine CNT. To avoid this problem, PS and CNTs were dissolved and dispersed in dimethylformamide and then PS/CNT nanocomposites were prepared by the coagulated precipitation of CNT-dispersed PS solution in water. The coagulated precipitation method was highly effective enhancing the electrical conductivity of nanocomposites. Furthermore, the effect of adding poly(styrene-co-divinylbenzene) crosslinked particles to PS matrix on the rheological and electrical properties was investigated. With the addition of the crosslinked particles, the electrical percolation threshold of CNT reduced to 0.25 wt% and electrical conductivity increased further. It is speculated that CNTs in the volume occupied by crosslinked particles helped electrical pathway formation.
Keywords
nanocomposite; carbon nanotube; crosslinked particle; coagulated precipitation; electrical percolation threshold;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 P. M. Ajayan, O. Stephan, C. Colliex, and D. Trauth, Science, 265, 1212 (1994).   DOI   ScienceOn
2 W. Lee, J. U. Lee, B. M. Jung, J. H. Byun, J. W. Yi, S. B. Lee, and B. S. Kim, Carbon, 65, 296 (2013).   DOI   ScienceOn
3 H. R. Dennis, D. L. Hunter, D. Chang, S. Kim, J. L. White, J. W. Cho, and D. R. Paul, Polymer, 42, 9513 (2001).   DOI   ScienceOn
4 N. Laugel, J. Hemmerle, C. Porcel, J. C. Voegel, P. Schaaf, and V. Ball, Langmuir, 23, 3706 (2007).   DOI   ScienceOn
5 S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhass, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. Ruoff, Nature, 442, 282 (2006).   DOI   ScienceOn
6 A. Krishnan, E. Dujardin, T. W. Ebbesen, P. N. Yianilos, and M. M. J. Treacy, Phys. Rev. B, 58, 14013 (1998).   DOI
7 Y. J. Kim, T. S. Shin, H. D. Choi, J. H. Kwon, Y. C. Chung, and H. G. Yoon, Carbon, 43, 23 (2005).   DOI   ScienceOn
8 Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, Adv. Mater., 22, 3906 (2010).   DOI   ScienceOn
9 H. Xu, S. M. Anlage, L. Hu, and G. Gruner, Appl. Phys. Lett., 90, 183119 (2007).   DOI
10 G. M. Odegard, S. J. V. Frankland, and T. S. Gates, AIAA J., 43, 1828 (2005).   DOI
11 Y. Yang, M. C. Gupta, and K. L. Dudley, Nanotechnol., 18, 345701 (2007).   DOI
12 Z. Zhang, J, Zhang, P. Chen, B. Zhang, J. He, and G. H. Hu, Carbon, 44, 692 (2006).   DOI   ScienceOn
13 J. Hilding, E. A. Grulke, Z. G. Zhang, and F. Lockwood, J. Disp. Sci. Technol., 24, 1 (2003).   DOI   ScienceOn
14 J. Zhu, M. Yudasaka, M. Zhang, and S. Iijima, J. Phys. Chem. B, 108, 11317, (2004).   DOI   ScienceOn
15 W. Zhao, C. Song, and P. E. Pehrsson, J. Am. Chem. Soc., 124, 12418 (2002).   DOI   ScienceOn
16 M. H. Kang, W. J. Noh, D. K. Woo, and S. J. Lee, Polymer(Korea), 36, 364 (2012).
17 S. A. Ntim, O. Sea-Khow, F. A. Witzmann, and S. Mitra, J. Colloid Interface Sci., 355, 383 (2011).   DOI
18 F. Du, J. E. Fischer, and K. I. Winey, J. Polym. Sci.; Part B: Polym. Phys., 41, 3333 (2003).   DOI   ScienceOn
19 M. Moniruzzaman and K. I. Winey, Macromolecules, 39, 5194 (2006).   DOI   ScienceOn
20 H. J. Barraza, F. Pompeo, A. O'Rear, and D. E. Resasco, Nano Lett., 2, 797 (2002).   DOI   ScienceOn
21 I. N. Mazov, V. L. Kuznetsov, D. V. Krasnikov, N. A. Rudina, A. I. Romanenko, O. B. Anikeeva, V. I. Suslyaev, E. Y. Korovin, and V. A. Zhuravlev, J. Nanotechnol., Article ID 648324 (2011).
22 F. Du, R. C. Scogna, W. Zhou, S. Brand, J. E. Fischer, and K. I. Winey, Macromolecules, 37, 9048 (2004).   DOI   ScienceOn
23 P. Potschke, T. D. Fornes, and D. R. Paul, Polymer, 43, 3247 (2002).   DOI   ScienceOn
24 G. Hu, C. Zhao, S. Zhang, M. Yang, and Z. Wang, Polymer, 47, 480 (2006).   DOI   ScienceOn
25 S. Wen and D. D. L. Chung, Carbon, 45, 263 (2007).   DOI
26 P. Potschke, A. R. Bhattacharyya, and A. Janke, Carbon, 42, 965 (2004).   DOI   ScienceOn
27 B. J. Ash, D. F. Rogers, C. J. Wiegand, L. S. Schadler, R. W. Siegel, B. C. Benicewicz, and T. Apple, Polym. Comp., 23, 1014 (2002).   DOI   ScienceOn
28 M. Zheng, A. Jagota, E. D. Semke, B. A. Diner, R. S. Mclean, S. R. Lustig, R. E. Richardson, and N. G. Tassi, Nat. Mater., 2, 338 (2003).   DOI   ScienceOn