DOI QR코드

DOI QR Code

Effect of Adding Crosslinked Particles on Rheological and Electrical Properties of Polystyrene/Carbon Nanotube Nanocomposites

가교 입자 첨가가 폴리스티렌/탄소나노튜브 나노복합재료의 유변물성 및 전기적 물성에 미치는 영향

  • Yeom, Hyo Yeol (Department of Polymer Engineering, The University of Suwon) ;
  • Na, Hyo Yeol (Department of Polymer Engineering, The University of Suwon) ;
  • Lee, Seong Jae (Department of Polymer Engineering, The University of Suwon)
  • 염효열 (수원대학교 공과대학 신소재공학과) ;
  • 나효열 (수원대학교 공과대학 신소재공학과) ;
  • 이성재 (수원대학교 공과대학 신소재공학과)
  • Received : 2014.04.17
  • Accepted : 2014.05.29
  • Published : 2014.11.25

Abstract

Rheological and electrical properties of polystyrene (PS)/carbon nanotube (CNT) nanocomposites via coagulated precipitation were investigated. Chemical modification and surfactant wrapping of CNT to improve the dispersion of CNTs may reduce the intrinsic properties of pristine CNT. To avoid this problem, PS and CNTs were dissolved and dispersed in dimethylformamide and then PS/CNT nanocomposites were prepared by the coagulated precipitation of CNT-dispersed PS solution in water. The coagulated precipitation method was highly effective enhancing the electrical conductivity of nanocomposites. Furthermore, the effect of adding poly(styrene-co-divinylbenzene) crosslinked particles to PS matrix on the rheological and electrical properties was investigated. With the addition of the crosslinked particles, the electrical percolation threshold of CNT reduced to 0.25 wt% and electrical conductivity increased further. It is speculated that CNTs in the volume occupied by crosslinked particles helped electrical pathway formation.

응고 침전법으로 제조한 폴리스티렌(PS)/탄소나노튜브(CNT) 나노복합재료의 유변물성 및 전기적 물성을 고찰하였다. CNT의 분산성 향상을 위해 도입하는 일반적인 방법인 화학적 개질이나 계면활성제 도포 방법은 CNT의 고유 물성을 저하시킬 수 있다. 이를 방지하기 위해 본 연구에서는 PS와 CNT를 dimethylformamide에 분산시킨 후 증류수에 응고 침전시키는 방법으로 나노복합재료를 제조하였다. 응고 침전법에 의한 CNT의 분산은 매우 효과적이어서 제조한 나노복합재료는 우수한 전기 전도도를 나타내었다. 또한 PS 매트릭스에 poly(styrene-co-divinylbenzene) 가교 입자를 첨가하여 가교 입자 첨가가 유변물성과 전기적 물성에 미치는 영향을 고찰하였다. 가교 입자를 첨가한 나노복합재료의 경우 CNT의 전기적 임계점이 0.25 wt%로 감소되었고 전기 전도도는 더욱 증가하였다. 이는 가교입자가 차지하는 부피 내의 CNT가 전기적 통로를 형성하는데 추가적으로 기여했기 때문으로 판단된다.

Keywords

References

  1. P. M. Ajayan, O. Stephan, C. Colliex, and D. Trauth, Science, 265, 1212 (1994). https://doi.org/10.1126/science.265.5176.1212
  2. W. Lee, J. U. Lee, B. M. Jung, J. H. Byun, J. W. Yi, S. B. Lee, and B. S. Kim, Carbon, 65, 296 (2013). https://doi.org/10.1016/j.carbon.2013.08.029
  3. H. R. Dennis, D. L. Hunter, D. Chang, S. Kim, J. L. White, J. W. Cho, and D. R. Paul, Polymer, 42, 9513 (2001). https://doi.org/10.1016/S0032-3861(01)00473-6
  4. N. Laugel, J. Hemmerle, C. Porcel, J. C. Voegel, P. Schaaf, and V. Ball, Langmuir, 23, 3706 (2007). https://doi.org/10.1021/la063052w
  5. B. J. Ash, D. F. Rogers, C. J. Wiegand, L. S. Schadler, R. W. Siegel, B. C. Benicewicz, and T. Apple, Polym. Comp., 23, 1014 (2002). https://doi.org/10.1002/pc.10497
  6. A. Krishnan, E. Dujardin, T. W. Ebbesen, P. N. Yianilos, and M. M. J. Treacy, Phys. Rev. B, 58, 14013 (1998). https://doi.org/10.1103/PhysRevB.58.14013
  7. Y. J. Kim, T. S. Shin, H. D. Choi, J. H. Kwon, Y. C. Chung, and H. G. Yoon, Carbon, 43, 23 (2005). https://doi.org/10.1016/j.carbon.2004.08.015
  8. Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, Adv. Mater., 22, 3906 (2010). https://doi.org/10.1002/adma.201001068
  9. S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhass, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. Ruoff, Nature, 442, 282 (2006). https://doi.org/10.1038/nature04969
  10. H. Xu, S. M. Anlage, L. Hu, and G. Gruner, Appl. Phys. Lett., 90, 183119 (2007). https://doi.org/10.1063/1.2734897
  11. G. M. Odegard, S. J. V. Frankland, and T. S. Gates, AIAA J., 43, 1828 (2005). https://doi.org/10.2514/1.9468
  12. Y. Yang, M. C. Gupta, and K. L. Dudley, Nanotechnol., 18, 345701 (2007). https://doi.org/10.1088/0957-4484/18/34/345701
  13. Z. Zhang, J, Zhang, P. Chen, B. Zhang, J. He, and G. H. Hu, Carbon, 44, 692 (2006). https://doi.org/10.1016/j.carbon.2005.09.027
  14. J. Hilding, E. A. Grulke, Z. G. Zhang, and F. Lockwood, J. Disp. Sci. Technol., 24, 1 (2003). https://doi.org/10.1081/DIS-120017941
  15. J. Zhu, M. Yudasaka, M. Zhang, and S. Iijima, J. Phys. Chem. B, 108, 11317, (2004). https://doi.org/10.1021/jp0494032
  16. M. Zheng, A. Jagota, E. D. Semke, B. A. Diner, R. S. Mclean, S. R. Lustig, R. E. Richardson, and N. G. Tassi, Nat. Mater., 2, 338 (2003). https://doi.org/10.1038/nmat877
  17. W. Zhao, C. Song, and P. E. Pehrsson, J. Am. Chem. Soc., 124, 12418 (2002). https://doi.org/10.1021/ja027861n
  18. M. H. Kang, W. J. Noh, D. K. Woo, and S. J. Lee, Polymer(Korea), 36, 364 (2012).
  19. S. A. Ntim, O. Sea-Khow, F. A. Witzmann, and S. Mitra, J. Colloid Interface Sci., 355, 383 (2011). https://doi.org/10.1016/j.jcis.2010.12.052
  20. F. Du, J. E. Fischer, and K. I. Winey, J. Polym. Sci.; Part B: Polym. Phys., 41, 3333 (2003). https://doi.org/10.1002/polb.10701
  21. M. Moniruzzaman and K. I. Winey, Macromolecules, 39, 5194 (2006). https://doi.org/10.1021/ma060733p
  22. H. J. Barraza, F. Pompeo, A. O'Rear, and D. E. Resasco, Nano Lett., 2, 797 (2002). https://doi.org/10.1021/nl0256208
  23. I. N. Mazov, V. L. Kuznetsov, D. V. Krasnikov, N. A. Rudina, A. I. Romanenko, O. B. Anikeeva, V. I. Suslyaev, E. Y. Korovin, and V. A. Zhuravlev, J. Nanotechnol., Article ID 648324 (2011).
  24. F. Du, R. C. Scogna, W. Zhou, S. Brand, J. E. Fischer, and K. I. Winey, Macromolecules, 37, 9048 (2004). https://doi.org/10.1021/ma049164g
  25. P. Potschke, T. D. Fornes, and D. R. Paul, Polymer, 43, 3247 (2002). https://doi.org/10.1016/S0032-3861(02)00151-9
  26. G. Hu, C. Zhao, S. Zhang, M. Yang, and Z. Wang, Polymer, 47, 480 (2006). https://doi.org/10.1016/j.polymer.2005.11.028
  27. P. Potschke, A. R. Bhattacharyya, and A. Janke, Carbon, 42, 965 (2004). https://doi.org/10.1016/j.carbon.2003.12.001
  28. S. Wen and D. D. L. Chung, Carbon, 45, 263 (2007). https://doi.org/10.1016/j.carbon.2006.09.031