Effect of Co-initiator on the Size Distribution of the Stable Poly(Styrene-co-Divinylbenzene) Microspheres in Acetone/Water Mixture

  • Published : 2009.07.25

Abstract

Stable poly(styrene-co-divinylbenzene) [P(St-co-DVB)] micro spheres with narrow size distribution were synthesized in the presence of 2,2'-azobis(2,4-dimethyl valeronitrile) (V-65) and co-initiator in an acetone/water mixture in the precipitation polymerization at $53^{\circ}C$ for 24 h. Potassium peroxodisulfate (KPS), ammonium peroxodisulfate (APS) and sodium peroxodisulfate (NaPS) were used as co-initiators. The optimum ratio of acetone to water for the formation of a narrow distribution of P(St-co-DVB) particles was 49:11 (g/g). The optimum co-initiator compositions for narrow distribution were 9:1 (g/g) for V-65 to KPS, 11:1 for V-65 to APS and 6:1 for V-65 to NaPS. The yield for these compositions was $54{\sim}57%$ and the largest particle size was obtained with the lowest zeta-potential and CV values. From the XPS measurements, the charge density was increased but the zeta potential decreased with increasing sulfur content, implying that the sulfate group provides the electrostatic stabilization on the particle surface. This suggested that the self-crosslinking between styrene and DVB, the electrostatic stabilization of initiators, and the balanced hydrophobic and hydrophilic properties of the solvents are responsible for the formation of stable P(St-co-DVB) spherical particles with narrow size distribution.

Keywords

References

  1. M. Hattori, E. D. Sudol, and M. S. El-Aasser, J. Polym. Sci. Part A: Polym. Chem., 30, 2027 (1993)
  2. P. Bradna, P. Stern, O. Quadrat, and J. Snuparek, Colloid Polym. Sci., 273, 324 (1995) https://doi.org/10.1007/BF00652345
  3. M. Okubo and T. Nakayama, Colloid Polym. Sci., 273, 530 (1994)
  4. G. Tepper and N. Levit, Ind. Eng. Chem. Res., 39, 4445 (2000) https://doi.org/10.1021/ie000118o
  5. R. H. Mueller, C. Jacobs, and O. Kayser, Adv. Drug. Deliver. Rev., 47, 3 (2001) https://doi.org/10.1016/S0169-409X(00)00118-6
  6. S. N. Li, X. L. Yang, and W. Q. Huang, Macromol. Chem. Phys., 206, 1967 (2005) https://doi.org/10.1002/macp.200500216
  7. G. Liu, X. Yang, and Y. Wang, Polym. Int., 56, 905 (2007) https://doi.org/10.1002/pi.2223
  8. S. Yang, S. E. Shim, and S. Choe, J. Polym. Sci. Part A: Polym. Chem., 43, 1309 (2005) https://doi.org/10.1002/pola.20417
  9. P. S. Mohanty, R. Kesavamoorthy, K. Matsumoto, H. Matsuoka, and K. A. Venkatesan, Langmuir, 22, 4552 (2006) https://doi.org/10.1021/la052995a
  10. J. S. Downey, R. S. Frank, W. H. Li, and H. D. H. Stover, Macromolecules, 32, 2838 (1999) https://doi.org/10.1021/ma9812027
  11. J. S. Song and M. A. Winnik, Macromol., 38, 8300 (2005) https://doi.org/10.1021/ma050992z
  12. K.C. Lee and S. Y. Lee, Macromol. Res., 15, 244 (2007) https://doi.org/10.1007/BF03218783
  13. J. Ugelstad, P. C. Mork, K. H. Kaggerud, T. Ellingsen, and A. Berg, Adv. Colloid Interf. Sci., 13, 101 (1980) https://doi.org/10.1016/0001-8686(80)87003-5
  14. K. Li and H. D. H. Stover, J. Polym. Sci. Part A: Polym. Chem., 31, 3257 (1993) https://doi.org/10.1002/pola.1993.080311313
  15. J. S. Downey, G. McIsaac, R. S. Frank, and H. D. H Stover, Macromol., 34, 45 (2001)
  16. J. M. Lee, P. J. Saikia, K. Lee, and S. Choe, Macromolecules, 41, 2037 (2008)
  17. E. C. C. Goh and H. D. H. Stover, Macromolecules, 35, 9983 (2002) https://doi.org/10.1021/ma0211028
  18. W. H. Li and H. D. H. Stover, J. Polym. Sci. Part A: Polym. Chem., 37, 2899 (1999) https://doi.org/10.1002/(SICI)1099-0518(19990801)37:15<2899::AID-POLA23>3.0.CO;2-8
  19. W. H. Li and H. D. H. Stover, J. Polym. Sci. Part A: Polym. Chem., 37, 2295 (1999) https://doi.org/10.1002/(SICI)1099-0518(19990715)37:14<2295::AID-POLA2>3.0.CO;2-J
  20. R. S. Frank, J. S. Downey, and H. D. H. Stover, J. Polym. Sci. Part A: Polym. Chem., 36, 2223 (1998) https://doi.org/10.1002/(SICI)1099-0518(19980930)36:13<2223::AID-POLA8>3.0.CO;2-U
  21. S. Yang, S. E. Shim, H. Lee, G. P. Kim, and S. Choe, Macromol. Res., 12, 519 (2004) https://doi.org/10.1007/BF03218437
  22. S. E. Shim, S. Yang, H. Jung, and S. Choe, Macromol. Res., 12, 233 (2004) https://doi.org/10.1007/BF03218393
  23. S. E. Shim, S. Yang, H. Jung, H. H. Choi, and S. Choe, J. Polym. Sci. Part A: Polym. Chem., 42, 835 (2004) https://doi.org/10.1002/pola.11028
  24. J. M. Jin, S. H. Yang, S. T. Han, and S. Choe, J. Ind. Eng. Chem., 12, 268 (2006)
  25. J. M. Jin, J. M. Lee, M. H. Ha, K. Lee, and S. Choe, Polymer, 48, 3107 (2007) https://doi.org/10.1016/j.polymer.2007.03.068
  26. S. H. Han, K. K. Park, and S. H. Lee, Macromol. Res., 16, 120 (2008) https://doi.org/10.1007/BF03218840
  27. S. E. Shim, S. Yang, J. M. Jin, Y. H. Chang, and S. Choe, Colloid Polym. Sci., 41, 283 (2004)
  28. D. D. Choi, K. Lee, and S. Choe, Inha Industry Partnership Institute Repub. Korea (2008)
  29. Z. Dai, X. Yang, and W. Huang, Polym. Int., 56, 224 (2007) https://doi.org/10.1002/pi.2136
  30. M. S. Kim, S. K. Kim, and J. Y. Lee, Macromol. Res., 16, 178 (2008) https://doi.org/10.1007/BF03218848
  31. M. Fernandez-Garcia, J. J. Martinez, and E. L. Madruga, Polymer, 39, 991 (1998) https://doi.org/10.1016/S0032-3861(97)00406-0
  32. D. R. Hwang, J. Hong, and J. Lee, Macromol. Res., 16, 329 (2008) https://doi.org/10.1007/BF03218525