• 제목/요약/키워드: poly(styrene sulfonate)

검색결과 49건 처리시간 0.022초

Poly-DADMAC과 PSS의 분자량을 달리한 중질탄산칼슘의 개질과 종이 물성에 미치는 영향 (Modification of GCC with Poly-DADMAC and PSS with Different Molecular Weights and its Effect on the Paper Properties)

  • 안정언;이제곤;이혜윤;윤혜정;이학래
    • 펄프종이기술
    • /
    • 제44권5호
    • /
    • pp.21-31
    • /
    • 2012
  • In this study, we modified the surface of ground calcium carbonate (GCC) with polyelectrolytes with different molecular weight using Layer-by-Layer (LbL) multilayering technique and investigated its effect on the paper properties. Polydiallydimethylammonium chloride (poly-DADMAC) and poly sodium 4-styrene sulfonate (PSS) which have different molecular weights were used for LbL multilayering. Zeta potential and particle size of the LbL modified GCC were measured. After preparation of handsheets, their structural and mechanical properties were evaluated. The zeta potential and average particle size of the modified GCC were affected by the molecular weight of anionic polyelectrolyte (PSS). The zeta potential was higher and the particle size was smaller when GCC was treated by PSS with high molecular weight compared to the case with low molecular weight of PSS. The tensile and internal bond strength of the handsheets was increased with an increase in the number of layers on GCC particles, but the molecular weight of polyelectrolyte did not significantly affect the paper strength.

Performance Characteristics of Polymer Photovoltaics using Dimethyl Sulphoxide incorporated PEDOT:PSS Buffer Layer

  • 박성희;이혜현;조영란;황종원;강용수;최영선
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.238-239
    • /
    • 2010
  • Dimethyl sulphoxide (DMSO) is one of the widely-used secondary dopants in order to enhance the conductivity of poly(3, 4-ethylenedioxy-thiophene):poly(styrene sulfonate) (PEDOT:PSS) film. In this work, we investigated the effect of DMSO doping in to PEDOT:PSS on the electrical performance of the bulk heterojunction photovoltaics consisting of poly(3-hexylthiophene-2, 5-diyl) and phenyl-C61-butyric acid methyl ester. Correlation between the power conversion efficiency and the mechanism of improving conductivity, surface morphology, and contact properties was examined. The PEDOT:PSS films, which contain different concentration of DMSO, have been prepared and annealed at different annealing temperatures. The mixture of DMSO and PEDOT:PSS was prepared with a ratio of 1%, 5%, 15%, 25%, 35%, 45%, 55% by volume of DMSO, respectively. The DMSO-contained PEDOT:PSS solutions were stirred for 1hr at $40^{\circ}C$, then spin-coated on the ultra-sonicated glass. The spin-coated films were baked for 10min at $65^{\circ}C$, $85^{\circ}C$, and $120^{\circ}C$ in air. In order to investigate the electrical performance, P3HT:PCBM blended film was deposited with thickness of 150nm on DMSO-doped PEDOT:PSS layer. After depositing 100nm of Al, the device was post-annealed for 30min at $120^{\circ}C$ in vacuum. The fabricated cells, in this study, have been characterized by using several techniques such as UV-Visible spectrum, 4-point probe, J-V characteristics, and atomic force microscopy (AFM). The power conversion efficiency (AM 1.5G conditions) was increased from 0.91% to 2.35% by tuning DMSO doping ratio and annealing temperature. It is believed that the improved power conversion efficiency of the photovoltaics is attributed to the increased conductivity, leading to increasing short-circuit current in DMSO-doped PEDOT:PSS layer.

  • PDF

PVA의 첨가에 의한 CVD 그래핀상 PEDOT : PSS의 코팅성 향상 (Improved Coating of PEDOT : PSS onto CVD Graphene by the Addition of PVA)

  • 박민의;신채연;김혜지;김승연;최영주;정대원
    • 공업화학
    • /
    • 제29권6호
    • /
    • pp.734-739
    • /
    • 2018
  • PVA를 PEDOT : PSS에 첨가해줌으로써 CVD 그래핀 상에 효과적으로 코팅할 수 있었다. PVA의 검화도 및 분자량에 따른 코팅성 및 필름의 전기적 특성을 검토한 결과, DS는 89%, 분자량은 $100,000gmol^{-1}$ 이하인 것이 바람직하였다. 또한, PVA의 첨가량은 PEDOT : PSS의 고형분 대비 5%가 최적으로 나타났다. 이와 같은 PVA를 사용하여 PEDOT : PSS를 CVD 그래핀 위에 코팅한 필름은 CVD 그래핀 필름에 비해서 표면조도, 부착성, 굴곡 내구성 및 고온($160^{\circ}C$)에서의 저항 안정성 등이 현저하게 개선되는 것으로 나타났다.

신축성있는 Ag 나노와이어 전극의 제조 및 전기변색 응용 (Fabrication of Stretchable Ag Nanowire Electrode and its Electrochromic Application)

  • 이진영;한송이;나윤채;박종운
    • 한국재료학회지
    • /
    • 제29권2호
    • /
    • pp.87-91
    • /
    • 2019
  • We report on stretchable electrochromic films of poly(3-hexylthiophene) (P3HT) fabricated on silver nanowire (AgNW) electrodes. AgNWs electrodes are prepared on polydimethylsiloxane (PDMS) substrates using a spray coater for stretchable electrochromic applications. On top of the AgNW electrode, poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is introduced to ensure a stable resistance over the electrode under broad strain range by effectively suppressing the protrusion of AgNWs from PDMS. This bilayer electrode exhibits a high performance as a stretchable substrate in terms of sheet resistance increment by a factor of 1.6, tensile strain change to 40 %, and stretching cycles to 100 cycles. Furthermore, P3HT film spin-coated on the bilayer electrode shows a stable electrochromic coloration within an applied voltage, with a color contrast of 28.6 %, response time of 4-5 sec, and a coloration efficiency of $91.0cm^2/C$. These findings indicate that AgNWs/PEDOT:PSS bilayer on PDMS substrate electrode is highly suitable for transparent and stretchable electrochromic devices.

PEDOT:PSS 및 PVDF 기반의 유-무기 열전 필름으로 제작된 플렉서블 열전 에너지 하베스터의 발전 성능 평가 (Evaluation of Output Performance of Flexible Thermoelectric Energy Harvester Made of Organic-Inorganic Thermoelectric Films Based on PEDOT:PSS and PVDF Matrix)

  • 나유진;박귀일
    • 한국재료학회지
    • /
    • 제33권7호
    • /
    • pp.295-301
    • /
    • 2023
  • Thermoelectric (TE) energy harvesting, which converts available thermal resources into electrical energy, is attracting significant attention, as it facilitates wireless and self-powered electronics. Recently, as demand for portable/wearable electronic devices and sensors increases, organic-inorganic TE films with polymeric matrix are being studied to realize flexible thermoelectric energy harvesters (f-TEHs). Here, we developed flexible organic-inorganic TE films with p-type Bi0.5Sb1.5Te3 powder and polymeric matrices such as poly(3,4-eethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) and poly (vinylidene fluoride) (PVDF). The fabricated TE films with a PEDOT:PSS matrix and 1 wt% of multi-walled carbon nanotube (MWCNT) exhibited a power factor value of 3.96 µW·m-1·K-2 which is about 2.8 times higher than that of PVDF-based TE film. We also fabricated f-TEHs using both types of TE films and investigated the TE output performance. The f-TEH made of PEDOT:PSS-based TE films harvested the maximum load voltage of 3.4 mV, with a load current of 17.4 µA, and output power of 15.7 nW at a temperature difference of 25 K, whereas the f-TEH with PVDF-based TE films generated values of 0.6 mV, 3.3 µA, and 0.54 nW. This study will broaden the fields of the research on methods to improve TE efficiency and the development of flexible organic-inorganic TE films and f-TEH.

Electrochemical Characterization of Multilayered CdTe/PSS Films Prepared by Electrostatic Self-assembly Method

  • Rabbani, Mohammad Mahbub;Yeum, Jeong Hyun;Kim, Jungsoo;Nam, Dae-Geun;Oh, Weontae
    • Transactions on Electrical and Electronic Materials
    • /
    • 제15권5호
    • /
    • pp.257-261
    • /
    • 2014
  • Multilayered CdTe/PSS films were prepared by the electrostatic self-assembly method in an aqueous medium. Positively-charged cadmium telluride (CdTe) nanoparticles and anionic polyelectrolyte, poly (sodium 4-styrene sulfonate) (PSS) were assembled alternately in order to build up a multilayered film structure. A linear proportion of absorbance to the number of bilayers suggests that an equal amount of CdTe was adsorbed after each dipping cycle, which resulted in the buildup of a homogenous film. The binding energies of elements (Cd and Te) in multilayered CdTe/PSS film shifted from those of the CdTe nanoparticles in the pure state. This result indicates that the interfacial electron densities were redistributed by the strong electrostatic interaction between the oppositely-charged CdTe and PSS. Electrochemical properties of the multilayered CdTe/PSS films were studied in detail by cyclic voltammetry (CV).

Layer-by-Layer 다층흡착 처리 시 고분자전해질 종류가 종이의 물성에 미치는 영향 (Effect of polyelectrolyte types in Layer-by-Layer multilayering treatment on physical properties of paper)

  • 이성린;류재호;진성민;윤혜정
    • 펄프종이기술
    • /
    • 제41권4호
    • /
    • pp.65-72
    • /
    • 2009
  • We investigated the effect of polyelectrolyte types in Layer-by-Layer multilayering and furnish combination on physical properties of paper. Handsheets were made from pulp fibers with different polyelectrolytes composition, and their density, formation, tensile strength, strain, tear strength and burst strength were evaluated. The density of handsheet was slightly decreased by polyelectrolyte multilayering. Formation did not show a significant change, but all mechanical properties were increased by polyelectrolyte multilayering. Remarkable improvement in tensile and tear strengths was obtained when pulp fibers were treated with cationic starch and poly styrene 4-sulfonate. Irrespectively of final ionicity of pulp fiber, tensile index, strain and tear strength of paper could be improved simultaneously by polyelectrolyte multilayering.

Sulfonated Polystyrene Ionomers Containing 4-Aminobenzoic Acid Studied by a Small-Angle X-Ray Scattering Technique

  • Song, Ju-Myung;Hong, Min-Chul;Kim, Joon-Seop;Jikang Yoo;Yu, Jeong-A;Kim, Whangi
    • Macromolecular Research
    • /
    • 제10권6호
    • /
    • pp.304-310
    • /
    • 2002
  • In a recent study by the same authors using a DMTA (Dynamic Mechanical Thermal Analyzer), it was found that the 4-aminobenzoic arid (ABA) molecules acted as either a neutralizing agent, or a plasticizer, or a filler, depending on the order of mixing of poly(styrene-co-styrenesulfonic acid) (PSSA), ABA, and NaOH. Subsequent to that study, we here pursued the same topic, i.e., the effect of the addition of CsOH (instead of NaOH) and ABA on the morphology of PSSA, but this time, by using a small-angle X-ray scattering (SAXS) technique. In line with the previous results, the present study with the SAXS technique verified that the order of mixing has a significant effect on the morphology of ionomers. In addition, with the SAXS data and the density values of the ionomers, we attempted to calculate both the number of sulfonate ionic groups per multiplet and the size of the multiplet of the ionomer.

전단 조건이 중질탄산칼슘의 무세척 고분자전해질 다층흡착 처리에 미치는 영향 (Effect of Shear Condition on Washless Polyelectrolytes Multilayering Treatment on GCC)

  • 이제곤;심규정;이학래;윤혜정
    • 펄프종이기술
    • /
    • 제46권5호
    • /
    • pp.51-60
    • /
    • 2014
  • To find a practical application approach of polyelectrolyte multilayering (PEM) on inorganic filler, we introduced PEM process without washing step and investigated the effect of shear condition on the washless PEM treatment of ground calcium carbonate (GCC). Washless multilayering on GCC was conducted under various shear conditions such as stirring, homogenization, and ultrasonication. Highly charged polyelectrolytes combination of polydiallyldimethylammonium chloride (PDADMAC) and poly sodium 4-styrene sulfonate (PSS) and low charged polyelectrolytes combination with cationic starch and anionic polyacrylamide (PAM) were compared. In the case of highly charged polyelectrolytes combination, shear conditions did not affect the zeta potential and the particle size of treated GCC. However, the modified GCC particles with low charged polyelectrolytes were more dispersed under higher shear condition while maintaining the zeta potential. In addition, GCC was successfully modified through laboratory inline washless polyelectrolyte multilayering system which consists of homogenizers and pumps.

다공성 멤브레인의 표면 개질에 따른 구조 및 성능 특성에 대한 실험 연구 (Experimental Study on Structural and Functional Characteristics of Surface-Modified Porous Membrane)

  • 이상혁;김기웅
    • 한국가시화정보학회지
    • /
    • 제19권1호
    • /
    • pp.50-56
    • /
    • 2021
  • With the advances in recent nanotechnology, mass transport phenomena have been receiving large attention both in academic researches and industrial applications. Nonetheless, it is not clearly determined which parameters are dominant at nanoscale mass transport. Especially, membrane is a kind of technology that use a selective separation to secure fresh water. The development of great separation membrane and membrane-based separation system is an important way to solve existing water resource problems. In this study, glass fiber-based membranes which are treated by graphene oxide (GO), poly-styrene sulfonate (GOP) and sodium dodecyl sulfate (GPS) were fabricated. Mass transport parameters were investigated in terms of material-specific and structure-specific dominance. The 3D structural information of GO, GOP, and GPS was obtained by using synchrotron X-ray nano tomography. In addition, electrostatic characteristic and water absorption rate of the membranes were investigated. As a result, we calculated internal structural information using Tomadakis-Sotrichos model, and we found that manipulation of surface characteristics can improve spacer arm effect, which means enhancement of water permeability by control length of ligand and surface charge functionality of the membrane.