DOI QR코드

DOI QR Code

Improved Coating of PEDOT : PSS onto CVD Graphene by the Addition of PVA

PVA의 첨가에 의한 CVD 그래핀상 PEDOT : PSS의 코팅성 향상

  • Park, Min Ui (Department of Polymer Engineering, College of Engineering, Suwon University) ;
  • Shin, Chaeyeon (Department of Polymer Engineering, College of Engineering, Suwon University) ;
  • Kim, Hyeji (Department of Polymer Engineering, College of Engineering, Suwon University) ;
  • Kim, Seung Yeon (EverChemTech Co., Ltd) ;
  • Choi, Young Ju (EverChemTech Co., Ltd) ;
  • Chung, Dae-won (Department of Polymer Engineering, College of Engineering, Suwon University)
  • 박민의 (수원대학교 공과대학 신소재공학과) ;
  • 신채연 (수원대학교 공과대학 신소재공학과) ;
  • 김혜지 (수원대학교 공과대학 신소재공학과) ;
  • 김승연 ((주)에버켐텍) ;
  • 최영주 ((주)에버켐텍) ;
  • 정대원 (수원대학교 공과대학 신소재공학과)
  • Received : 2018.08.09
  • Accepted : 2018.09.08
  • Published : 2018.12.10

Abstract

We successfully coated poly(3,4-ethylenedioxythiophene) : poly(styrene sulfonate) (PEDOT : PSS) on CVD graphene by adding poly(vinyl alcohol) (PVA) to PEDOT : PSS. Extensive studies on the wettability of coating solutions and electrical properties of formed films led us to conclude that PVA with 89% of the degree of saponification and the molecular weight of less than $100,000gmol^{-1}$ produced optimum results. Furthermore, the optimum content of PVA was found to be 5% of PEDOT : PSS by the solid weight. The film coated by PEDOT : PSS with PVA on CVD graphene displayed a conspicuous improvement in the surface roughness, adhesive property, bending durability and stability in resistance at $160^{\circ}C$, compared to those of using CVD graphene films.

PVA를 PEDOT : PSS에 첨가해줌으로써 CVD 그래핀 상에 효과적으로 코팅할 수 있었다. PVA의 검화도 및 분자량에 따른 코팅성 및 필름의 전기적 특성을 검토한 결과, DS는 89%, 분자량은 $100,000gmol^{-1}$ 이하인 것이 바람직하였다. 또한, PVA의 첨가량은 PEDOT : PSS의 고형분 대비 5%가 최적으로 나타났다. 이와 같은 PVA를 사용하여 PEDOT : PSS를 CVD 그래핀 위에 코팅한 필름은 CVD 그래핀 필름에 비해서 표면조도, 부착성, 굴곡 내구성 및 고온($160^{\circ}C$)에서의 저항 안정성 등이 현저하게 개선되는 것으로 나타났다.

Keywords

GOOOB2_2018_v29n6_734_f0001.png 이미지

Figure 1. Chemical structures of PEDOT : PSS and PVA.

GOOOB2_2018_v29n6_734_f0002.png 이미지

Figure 2. AFM images of the surface of CVD graphene (A) and CVD graphenes coated by PEDOT : PSS with PVA-1 (B), PVA-2 (C) and PVA-3 (D).

GOOOB2_2018_v29n6_734_f0003.png 이미지

Figure 3. The change in resistance of CVD graphene and CVD graphenes coated by PEDOT : PSS with PVA-2 with various amounts under 3R bending.

GOOOB2_2018_v29n6_734_f0004.png 이미지

Figure 4. Surface resistance of CVD graphene and CVD graphenes coated by PEDOT : PSS with PVA-2 with various amounts after incubation at 160 ℃.

GOOOB2_2018_v29n6_734_f0005.png 이미지

Figure 5. Transmittance of CVD graphene and CVD graphenes coated by PVA-2 only or by PEDOT : PSS with PVA-2 with various amounts after incubation at 160 ℃.

Table 1. Properties of Films Coated with PEDOT : PSS Using Various PVAs on CVD Graphene

GOOOB2_2018_v29n6_734_t0001.png 이미지

Table 2. Properties of Films Coated by PEDOT : PSS with Various Amount of PVAs on CVD Graphene

GOOOB2_2018_v29n6_734_t0002.png 이미지

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science, 306, 666-669 (2004). https://doi.org/10.1126/science.1102896
  2. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, Fine structure constant defines visual transparency of graphene, Science, 320, 1308 (2008). https://doi.org/10.1126/science.1156965
  3. C. Lee, X. Wei, J. W. Kysar, and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science, 321, 385-388 (2008). https://doi.org/10.1126/science.1157996
  4. M. J. Allen, V. C. Tung, and R. B. Kaner, Honeyconb carbon: A review of graphene, Chem. Rev., 110, 132-145 (2010). https://doi.org/10.1021/cr900070d
  5. P. R. Ferrer, A. Mace, S. N. Thomas, and J. W. Jeon, Nanostructured porous graphene and its composites for energy storage applications, Nano Converg., 4, 29 (2017). https://doi.org/10.1186/s40580-017-0123-0
  6. J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth, The structure of suspended graphene sheets, Nature, 446, 60-63 (2007). https://doi.org/10.1038/nature05545
  7. A. K. Geim, Graphene: Status and prospects, Science, 324, 1530-1534 (2009). https://doi.org/10.1126/science.1158877
  8. J. Kang, D. Shin, S. Bae, and B. H. Hong, Graphene transfer: key for applications, Nanoscale, 4, 5527-5537 (2012). https://doi.org/10.1039/c2nr31317k
  9. T. Yoon, W. C. Shin, T. Y. Kim, J. H. Mun, T. S. Kim, and B. J. Cho, Direct measurement of adhesion energy of monolayer graphene as-grown on copper and its application to renewable transfer process, Nano Lett., 12, 1448-1452 (2012). https://doi.org/10.1021/nl204123h
  10. J. Yang, P. B. Liu, X. Z. Wei, W. Luo, J. Yang, H. Jiang, D. Wei, R. Shi, and H. Shi, Surface engineering of graphene composite transparent electrodes for high-performance flexible triboelectric nanogenerators and self-powered sensors, ACS Appl. Mater. Interfaces, 9, 36017-36025 (2017). https://doi.org/10.1021/acsami.7b10373
  11. L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, and J. R. Reynolds, Poly(3,4-ethylenedioxythiophene) and its derivatives: Past, present, and future‚ Adv. Mater., 12, 481-494 (2000). https://doi.org/10.1002/(SICI)1521-4095(200004)12:7<481::AID-ADMA481>3.0.CO;2-C
  12. H. Park, J. A. Rowehl, K. K. Kim, V. Bulovic, and J. Kong, Doped graphene electrodes for organic solar cells, Nanotechnology, 21, 505204 (2010). https://doi.org/10.1088/0957-4484/21/50/505204
  13. H. Park, Y. M. Shi, and J. Kong, Application of solvent modified PEDOT : PSS to graphene electrodes in organic solar cells, Nanoscale, 5, 8934-8939 (2013). https://doi.org/10.1039/c3nr00611e
  14. H. Kim, S. H. Bae, T. H. Han, K. G. Lim, J. H. Ahn, and T. W. Lee, Organic solar cells using CVD grown graphene electrodes, Nanotechnology, 25, 014012 (2014). https://doi.org/10.1088/0957-4484/25/1/014012
  15. M. Chen, S. Duan, L. Zhang, Z. Wang, and C. Li, Three-dimensional porous stretchable and conductive polymer composites based on graphene networks grown by chemical vapour deposition and PEDOT : PSS coating, Chem. Commun., 51, 3169-3172 (2015). https://doi.org/10.1039/C4CC09367D
  16. K. Mamada, H. Kosukegawa, V. Fridrici, P. Kapsa, and M. Ohta, Friction properties of PVA-H/steel ball contact under water lubrication conditions, Tribol. Int., 44, 757-763 (2011). https://doi.org/10.1016/j.triboint.2010.12.014
  17. S. J. Kim, J. Ryu, S. Son, J. M. Yoo, J. B. Park, D. Won, E. K. Lee, S. P. Cho, S. Bae, S. Cho, and B. H. Hong, Simultaneous etching and doping by Cu-stabilizing agent for high performance graphene-based transparent electrodes, Chem. Mater., 26, 2332-2336 (2014). https://doi.org/10.1021/cm500335y
  18. R. Vayeda and J. Wang, Adhesion of coatings to sheet metal under plastic deformation, Elesiver, 27, 480-492 (2007). https://doi.org/10.1016/j.ijadhadh.2006.08.003
  19. W. Phuchaduek, T. Jamnongkan, U. Rattanasak, S. Boonsang, and S. Kaewpirom, Improvement in physical and electrical properties of poly(vinyl alcohol) hydrogel conductive polymer composites, J. Appl. Polym. Sci., 132, 42234 (2015).
  20. S. C. Biswas, L. Dubreil, and D. Marion, Interfacial behavior of wheat puroindolines: Study of adsorption at the air-water interface from surface tensio measurement using wilhelmy plate method, J. Colloid Interface Sci., 244, 245-253 (2001). https://doi.org/10.1006/jcis.2001.7940
  21. F. C. Krebs, All solution roll-to-roll processed polymer solar cells free from indium-tin-oxide and vacuum coating steps, Org. Electron., 10, 761-768 (2009). https://doi.org/10.1016/j.orgel.2009.03.009
  22. S. G. Park, J. J. Na, J. S. Lee, and R. A. Osteryoung, Characteristics of film preparation with conducting polyphenylenediamine powder, J. Ind. Eng. Chem., 2, 181-188 (1996).
  23. R. G. D. Arco, Y. Zhang, W, Schlenker, K. Ryu, M. E. Thompson, and C. Zhou, Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics, ACS Nano, 4, 2865-2873 (2010). https://doi.org/10.1021/nn901587x
  24. J. W. Suk, A. Kitt, C. W. Magnuson, Y. Hao, S. Ahamed, J. An, A. K. Swan, B. B. Goldberg, and R. S. Ruoff, Transfer of CVD-grown monolayer graphene onto arbitray subsrates, ACS Nano, 9, 6916-6924 (2011).
  25. J. D. Wood, G. P. Doidge, E. A. Carrion, J. C. Koepke, J. A. Kaitz, I. Datye, A. Behnam, J. Hewaparakrakrama, B. Aruin, Y. Chen, H. Dong, R. T. Haasch, J. W. lyding, and E. Pop, Annealing free, clean graphene transfer using alternative polymer scaffolds, Nanotechnology, 26, 055302 (2015). https://doi.org/10.1088/0957-4484/26/5/055302
  26. A. R. Hopkins and J. R. Reynolds, Crystallization driven formation of conducting polymer networks in polymer blends, Macromolecules, 33, 5221-5226 (2000). https://doi.org/10.1021/ma991347t
  27. Y. Zhang, L. Zhang, and C. Zhou, Review of chemical vapor deposition of graphene and related applications, Acc. Chem. Res., 46, 2329-2339 (2013). https://doi.org/10.1021/ar300203n
  28. C. H. Chen, J. C. LaRue, R. D. Nelson, L. Kulinsky, and M. J. Madou, Electrical conductivity of polymer blends of poly(3,4-ethylenedioxythiophene) : poly(styrenesulfonate) : N-methyl-2-pyrrolidinone and polyvinyl alcohol, J. Appl. Polym. Sci., 125, 3134-3141 (2012). https://doi.org/10.1002/app.36474
  29. H. H. Kim, J. W. Yang, S. B. Jo, B. Kang, S. K. Lee, H. Bong, G. Lee, K. S. Kim, and K. Cho, Substrate-induced solvent intercalation for stable graphene doping, ACS Nano, 7, 1155-1162 (2013). https://doi.org/10.1021/nn306012p
  30. Z. Xiong and C. Liu, Optimization of inkjet printed PEDOT : PSS thin films through annealing processes, Org. Electron., 13, 1532-1540 (2012). https://doi.org/10.1016/j.orgel.2012.05.005