Figure 1. Chemical structures of PEDOT : PSS and PVA.
Figure 2. AFM images of the surface of CVD graphene (A) and CVD graphenes coated by PEDOT : PSS with PVA-1 (B), PVA-2 (C) and PVA-3 (D).
Figure 3. The change in resistance of CVD graphene and CVD graphenes coated by PEDOT : PSS with PVA-2 with various amounts under 3R bending.
Figure 4. Surface resistance of CVD graphene and CVD graphenes coated by PEDOT : PSS with PVA-2 with various amounts after incubation at 160 ℃.
Figure 5. Transmittance of CVD graphene and CVD graphenes coated by PVA-2 only or by PEDOT : PSS with PVA-2 with various amounts after incubation at 160 ℃.
Table 1. Properties of Films Coated with PEDOT : PSS Using Various PVAs on CVD Graphene
Table 2. Properties of Films Coated by PEDOT : PSS with Various Amount of PVAs on CVD Graphene
References
- K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science, 306, 666-669 (2004). https://doi.org/10.1126/science.1102896
- R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, Fine structure constant defines visual transparency of graphene, Science, 320, 1308 (2008). https://doi.org/10.1126/science.1156965
- C. Lee, X. Wei, J. W. Kysar, and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science, 321, 385-388 (2008). https://doi.org/10.1126/science.1157996
- M. J. Allen, V. C. Tung, and R. B. Kaner, Honeyconb carbon: A review of graphene, Chem. Rev., 110, 132-145 (2010). https://doi.org/10.1021/cr900070d
- P. R. Ferrer, A. Mace, S. N. Thomas, and J. W. Jeon, Nanostructured porous graphene and its composites for energy storage applications, Nano Converg., 4, 29 (2017). https://doi.org/10.1186/s40580-017-0123-0
- J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth, The structure of suspended graphene sheets, Nature, 446, 60-63 (2007). https://doi.org/10.1038/nature05545
- A. K. Geim, Graphene: Status and prospects, Science, 324, 1530-1534 (2009). https://doi.org/10.1126/science.1158877
- J. Kang, D. Shin, S. Bae, and B. H. Hong, Graphene transfer: key for applications, Nanoscale, 4, 5527-5537 (2012). https://doi.org/10.1039/c2nr31317k
- T. Yoon, W. C. Shin, T. Y. Kim, J. H. Mun, T. S. Kim, and B. J. Cho, Direct measurement of adhesion energy of monolayer graphene as-grown on copper and its application to renewable transfer process, Nano Lett., 12, 1448-1452 (2012). https://doi.org/10.1021/nl204123h
- J. Yang, P. B. Liu, X. Z. Wei, W. Luo, J. Yang, H. Jiang, D. Wei, R. Shi, and H. Shi, Surface engineering of graphene composite transparent electrodes for high-performance flexible triboelectric nanogenerators and self-powered sensors, ACS Appl. Mater. Interfaces, 9, 36017-36025 (2017). https://doi.org/10.1021/acsami.7b10373
- L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, and J. R. Reynolds, Poly(3,4-ethylenedioxythiophene) and its derivatives: Past, present, and future‚ Adv. Mater., 12, 481-494 (2000). https://doi.org/10.1002/(SICI)1521-4095(200004)12:7<481::AID-ADMA481>3.0.CO;2-C
- H. Park, J. A. Rowehl, K. K. Kim, V. Bulovic, and J. Kong, Doped graphene electrodes for organic solar cells, Nanotechnology, 21, 505204 (2010). https://doi.org/10.1088/0957-4484/21/50/505204
- H. Park, Y. M. Shi, and J. Kong, Application of solvent modified PEDOT : PSS to graphene electrodes in organic solar cells, Nanoscale, 5, 8934-8939 (2013). https://doi.org/10.1039/c3nr00611e
- H. Kim, S. H. Bae, T. H. Han, K. G. Lim, J. H. Ahn, and T. W. Lee, Organic solar cells using CVD grown graphene electrodes, Nanotechnology, 25, 014012 (2014). https://doi.org/10.1088/0957-4484/25/1/014012
- M. Chen, S. Duan, L. Zhang, Z. Wang, and C. Li, Three-dimensional porous stretchable and conductive polymer composites based on graphene networks grown by chemical vapour deposition and PEDOT : PSS coating, Chem. Commun., 51, 3169-3172 (2015). https://doi.org/10.1039/C4CC09367D
- K. Mamada, H. Kosukegawa, V. Fridrici, P. Kapsa, and M. Ohta, Friction properties of PVA-H/steel ball contact under water lubrication conditions, Tribol. Int., 44, 757-763 (2011). https://doi.org/10.1016/j.triboint.2010.12.014
- S. J. Kim, J. Ryu, S. Son, J. M. Yoo, J. B. Park, D. Won, E. K. Lee, S. P. Cho, S. Bae, S. Cho, and B. H. Hong, Simultaneous etching and doping by Cu-stabilizing agent for high performance graphene-based transparent electrodes, Chem. Mater., 26, 2332-2336 (2014). https://doi.org/10.1021/cm500335y
- R. Vayeda and J. Wang, Adhesion of coatings to sheet metal under plastic deformation, Elesiver, 27, 480-492 (2007). https://doi.org/10.1016/j.ijadhadh.2006.08.003
- W. Phuchaduek, T. Jamnongkan, U. Rattanasak, S. Boonsang, and S. Kaewpirom, Improvement in physical and electrical properties of poly(vinyl alcohol) hydrogel conductive polymer composites, J. Appl. Polym. Sci., 132, 42234 (2015).
- S. C. Biswas, L. Dubreil, and D. Marion, Interfacial behavior of wheat puroindolines: Study of adsorption at the air-water interface from surface tensio measurement using wilhelmy plate method, J. Colloid Interface Sci., 244, 245-253 (2001). https://doi.org/10.1006/jcis.2001.7940
- F. C. Krebs, All solution roll-to-roll processed polymer solar cells free from indium-tin-oxide and vacuum coating steps, Org. Electron., 10, 761-768 (2009). https://doi.org/10.1016/j.orgel.2009.03.009
- S. G. Park, J. J. Na, J. S. Lee, and R. A. Osteryoung, Characteristics of film preparation with conducting polyphenylenediamine powder, J. Ind. Eng. Chem., 2, 181-188 (1996).
- R. G. D. Arco, Y. Zhang, W, Schlenker, K. Ryu, M. E. Thompson, and C. Zhou, Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics, ACS Nano, 4, 2865-2873 (2010). https://doi.org/10.1021/nn901587x
- J. W. Suk, A. Kitt, C. W. Magnuson, Y. Hao, S. Ahamed, J. An, A. K. Swan, B. B. Goldberg, and R. S. Ruoff, Transfer of CVD-grown monolayer graphene onto arbitray subsrates, ACS Nano, 9, 6916-6924 (2011).
- J. D. Wood, G. P. Doidge, E. A. Carrion, J. C. Koepke, J. A. Kaitz, I. Datye, A. Behnam, J. Hewaparakrakrama, B. Aruin, Y. Chen, H. Dong, R. T. Haasch, J. W. lyding, and E. Pop, Annealing free, clean graphene transfer using alternative polymer scaffolds, Nanotechnology, 26, 055302 (2015). https://doi.org/10.1088/0957-4484/26/5/055302
- A. R. Hopkins and J. R. Reynolds, Crystallization driven formation of conducting polymer networks in polymer blends, Macromolecules, 33, 5221-5226 (2000). https://doi.org/10.1021/ma991347t
- Y. Zhang, L. Zhang, and C. Zhou, Review of chemical vapor deposition of graphene and related applications, Acc. Chem. Res., 46, 2329-2339 (2013). https://doi.org/10.1021/ar300203n
- C. H. Chen, J. C. LaRue, R. D. Nelson, L. Kulinsky, and M. J. Madou, Electrical conductivity of polymer blends of poly(3,4-ethylenedioxythiophene) : poly(styrenesulfonate) : N-methyl-2-pyrrolidinone and polyvinyl alcohol, J. Appl. Polym. Sci., 125, 3134-3141 (2012). https://doi.org/10.1002/app.36474
- H. H. Kim, J. W. Yang, S. B. Jo, B. Kang, S. K. Lee, H. Bong, G. Lee, K. S. Kim, and K. Cho, Substrate-induced solvent intercalation for stable graphene doping, ACS Nano, 7, 1155-1162 (2013). https://doi.org/10.1021/nn306012p
- Z. Xiong and C. Liu, Optimization of inkjet printed PEDOT : PSS thin films through annealing processes, Org. Electron., 13, 1532-1540 (2012). https://doi.org/10.1016/j.orgel.2012.05.005