• Title/Summary/Keyword: poly(phenylene sulfide) (PPS)

Search Result 18, Processing Time 0.03 seconds

The Improvement of Thermal Stability and Tensile Toughness by the Photocrosslinking of Poly(phenylene sulfide) containing Acetophenone (아세토페논을 함유한 Poly(phenylene sulfide)의 광가교에 의한 내열성과 인장인성 강화)

  • Jang, Yong-Joon;Jang, Jinho
    • Textile Coloration and Finishing
    • /
    • v.24 no.4
    • /
    • pp.281-287
    • /
    • 2012
  • Poly(phenylene sulfide) films containing acetophenone as a photoinitiator were photocrosslinked under UV irradiation using a continuous UV irradiator. The gel fraction of the irradiated PPS in 1-Chloro naphthalene reached 94.7% with increasing UV energy and the photoinitiator concentration in the film upto $200J/cm^2$ and 12wt% respectively. Solid state $^1C$ NMR analysis suggested that the crosslinking occurred between the phenylene chains in PPS, indicating that the acetophenone may the phenylene hydrogens and subsequently adjacent polymer radicals could be recombined to form the crosslinked structure. The crosslinking improved the thermal behavior of PPS such as loss of $T_g$ and $T_c$, higher melting point and lower melting enthalphy as well as significantly higher peak pyrolysis temperature as much as $63.5^{\circ}C$. Surprisingly the tensile toughness of the most crosslinked PPS increased by 842%, resulting from the substantial enhancements in tensile modulus, strength and strain as much as 76%, 236% and 240% respectively. Also dynamic mechanical measurement indicated that the distance between crosslinks in the crosslinked PPS reached 85.3 g/mol corresponing to a crosslink density of 0.012 mol/g.

Surface Treatment and Dyeability of Poly(phenylene sulfide) Films by UV/O3 Irradiation (UV/Ozone 조사에 의한 Poly(phenylene sulfide) 필름의 표면처리와 염색성)

  • Jang, Yong-Joon;Jang, Jin-Ho
    • Textile Coloration and Finishing
    • /
    • v.23 no.4
    • /
    • pp.284-289
    • /
    • 2011
  • Poly(phenylene sulfide)(PPS) films were photooxidized under UV/ozone irradiation. The effect of UV energy on the surface properties of the UV-irradiation PPS films were investigated by the measurement of reflectance, surface roughness, and contact angle. Reflectance decreased at the wavelength of 400nm and the surface roughness increased with increased UV energy. The improvement in hydrophilicity with increased $O_{1s}/C_{1s}$ was caused by the introduction of hydrophilic $SO_2$ bond. Surface energy increased from 46.6 to $78.3mJ/m^2$ with increased UV energy up to $21.2J/cm^2$. Also zeta potential decreased with increased UV energy. The increased dyeability to cationic dyes may be due to the photochemically introduced anionic and dipolar dyeing sites on the PPS films surfaces.he photochemically introduced anionic and dipolar dyeing sites on the PPS films surfaces.

Electrical and Thermal Properties of Poly(p-phenylene sulfide) Reduced Graphite Oxide Nanocomposites

  • Chae, Byung-Jae;Kim, Do Hwan;Jeong, In-Soo;Hahn, Jae Ryang;Ku, Bon-Cheol
    • Carbon letters
    • /
    • v.13 no.4
    • /
    • pp.221-225
    • /
    • 2012
  • Graphite oxide (GO) was produced using the modified Hummer's method. Poly(p-phenylene sulfide) (PPS)/reduced graphite oxide (RGO) composites were prepared by in situ polymerization method. The electrical conductivity of the PPS/RGO composites was no more than 82 S/m. It was found that as GO content increased in the PPS/RGO composites, the crystallization temperature and electrical conductivity of the composites increased and the percolation threshold value was at 5-8 wt% of GO content.

Preparation and Characterization of Poly(phenylene sulfide)-Functionalized MWNTs (폴리(페닐렌 설파이드)로 기능화된 다중벽 탄소나노튜브의 제조와 특성분석)

  • Hong, Sung Yeon;Kim, Young Ho
    • Polymer(Korea)
    • /
    • v.38 no.6
    • /
    • pp.791-800
    • /
    • 2014
  • 4-Chlorobenzoyl (CB) group-attached multi-walled carbon nanotube (c-MWNT) was prepared via a direct Friedel-Crafts acylation of MWNT with 4-chlorobenzoic acid (CBA) in a $P_2O_5$/poly(phosphoric acid) medium. c-MWNT with a maximum chlorine content of 5.3 wt% (CB group content of 20.9 wt%) was obtained by controlling the amount of CBA during the reaction. Using a self-condensation polymerization of 4-chlorobenzenethiol (CBT) to poly(phenylene sulfide) (PPS), MWNT-g-PPS was prepared by adding c-MWNT of chlorine content of 5.3 wt% during the self-polymerization of CBT and removing homo PPS after polymerization in order to increase the interfacial interaction between PPS and MWNT. Thermal and surface properties of the MWNT-g-PPS were characterized. The results showed that PPS was formed on the surface of c-MWNT by the condensation of c-MWNT and CBT.

Effect of Metallocene-catalyzed Polyethylene on the Rheological and Mechanical Properties of Poly(phenylene sulfide)/Polyethylene Blends

  • Lee, Bo-Sun;Chun, Byoung-Chul;Chung, Yong-Chan
    • Fibers and Polymers
    • /
    • v.5 no.2
    • /
    • pp.145-150
    • /
    • 2004
  • Blends of poly(phenylene sulfide) (PPS) and polyethylene, either linear low density polyethylene (LLDPE) or metallocene-catalyzed polyethylene (MPE), that were prepared by melt blending, were investigated. From the rheological properties as determined by capillary rheometry, the melt viscosity of both PPS/LLDPE and PPS/MPE blends was low when PE was in dispersed phase, but high melt viscosity was observed for both blends with PPS in dispersed phase. Significant differences depending on the composition were found in the mechanical properties such as percent elongation at break and notched Izod impact strength. In addition, dispersed phase morphology of the blends was analyzed by a scanning electron microscope (SEM), together with brief discussion about the difference between them.

The effect of UV Irradiation on the Photo-crosslinking of Poly (phenylene sulfide) film (자외선 조사가 Poly (phenylene sulfide) film의 광가교에 미치는 영향)

  • Jang, Yong-Joon;Jang, Jin-Ho
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2012.03a
    • /
    • pp.52-52
    • /
    • 2012
  • Poly(phenylene sulfide)(PPS)는 내열성 및 내화학성이 뛰어난 고분자 소재로, 대표적인 엔지니어링 플라스틱 중 하나이다. PPS는 벤젠 링에 황원자가 파라 치환 형태로 교대로 존재하는 결정성 고분자이며, 다른 대부분의 고성능 섬유고분자가 용융되지 않는 것과는 달리 용융되는 열가소성 소재이다. PPS는 높은 내약품성과 열에 대한 장기적인 안정성을 나타내고, 방염제 첨가 없이도 방염화가 가능하며, 전기 절연성이 뛰어나고, 형태안정성도 우수하다. 또한 $200^{\circ}C$ 이하에서는 어떤 용매에도 용해되지 않으며, $200^{\circ}C$ 이상에서도 몇 가지 방향족 화합물에만 제한된 범위 내에서 용해되는 우수한 내약품성을 나타낸다. PPS의 내열성을 더욱 우수하게 하기 위해 고분자 사슬을 가교할 수 있다. 가교에는 열처리 또는 감마선, 전자선, 자외선 조사를 이용할 수 있는데 열에 의한 가교는 균일한 열전달과 고온이 필요하며 감마선 및 전자선 조사는 설비의 고비용과 방사선 노출 위험으로 인해 비친환경적이다. 반면에 자외선 조사법은 다루기 쉽고 비용이 적게 들고 친환경적인 장점을 가진다. 본 연구에서는 PPS film의 열안정성을 향상시키기 위해 자외선 조사를 이용하여 PPS film의 광가교를 수행하였다.

  • PDF

Synthesis and Thermal Properties of PPS/PPSS Copolymer (PPS/PPSS 공중합체의 합성 및 열적 성질)

  • Park, Lee-Soon;Lee, Tae-Hyung;Kwak, Kyu-Dae;Haw, Jung-Rim
    • Applied Chemistry for Engineering
    • /
    • v.9 no.3
    • /
    • pp.440-444
    • /
    • 1998
  • Poly(phenylene sulfide-co-phenylene sulfide sulfone), PPS/PPSS copolymers were synthesized from p-dichlobenzene(DCB), p-dibromobenzene(DBB), p-diiodobenzene(DIB), 4-chlorophenyl sulfone(CPS) and sodium sulfide as comonomers under high temperature and pressure utilizing N-methyl-2-pyrrolidinone(NMP) as solvent. The yield of PPS/PPSS copolymer shoed maximum at $190^{\circ}C$ with [DBB]/[CPS] and [DIB]/[CPS] comonomer pair, while [DCB]/[CPS] pair exhibited maximum yield at $230^{\circ}C$. The change of yield is in the order of I>Br>Cl as leaving groups were in accordance with nucleophilic aromatic substitution reaction mechanism suggested for the synthesis of PPS type polymers. The molecular weight of PPS/PPSS copolymer was the highest($M_w=8,330g/mol$) with [DBB]/[CPS] comonomers in which [CPS] was 10 mole%. The PPS/PPSS copolymer made with 10 mole% of [CPS] showed about $15^{\circ}C$ higher $T_g$ and $15^{\circ}C$ lower $T_m$ than those of PPS homopolymer, which may be useful from the processing and thermal property point of view. The PPS/PPSS copolymer with 30 mole% of CPS or above did not exhibit Tm. The PPS/PPSS copolymer obtained with comonomer feed ratio of [DBB]/[CPS] = 95/5 mole% under $240^{\circ}C$ showed even higher molecular weight($M_w=10,300g/mole$) than PPS homopolymer made under similar reaction condition, retaining high crystallinity and thermal stability.

  • PDF

A Study on the Characteristics of the Hybrid Carbons Filled Poly(Phenylene Sulfide) Composite Bipolar Plates of Fuel Cell (하이브리드카본이 충전된 Poly(Phenylene Sulfide) 복합재 연료전지 분리판 특성 연구)

  • Kim, Nam-Hoon;Park, Ok-Kyung;Lee, Chang-No;Lee, Joong-Hee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.172-175
    • /
    • 2009
  • A bipolar plate is an important component in a fuel cell in the sense of cost and weight. This study aimed at developing highly conductive, lightweight, and low cost bipolar plates. Hybrid carbons filled poly(phenylene sulfide)(PPS) composite bipolar plates were prepared by using the compression molding technique. Various types and amounts of conducting carbon fillers such as graphite, carbon black, carbon fibers, and carbon nanotubes (CNTs) were adopted for the composites. Electrical conductivity and mechanical properties of the composites were measured in order to investigate effects of each components of fillers. When the graphite is only used as a conducting filler, the electrical conductivity of the composites increases with increasing the content, but the flexural strength decreases dramatically. However, for CNTs and carbon fibers, the flexural strength initially increases and then decreases with increasing the amount of the conducting fillers. The amount of graphite corresponding to the peak of flexural strength was moved to lower content with increasing the amount of CNTs or carbon fiber. When hybrid conducting fillers such as fibrous and particulate fillers were used, the synergy effect in mechanical and electrical properties was observed.

  • PDF