• Title/Summary/Keyword: poly(phenylene oxide)

Search Result 35, Processing Time 0.024 seconds

Synthesis of Poly(2,6-dimethyl-1,4-phenylene oxide) containing Poly(styrene sulfonic acid) for Fuel Cell (연료전지용 Poly(styrene sulfonic acid)를 갖는 Poly(2,6-dimethyl-1,4-phenylene oxid)의 합성)

  • An, Sung-Guk;Cho, Chang-Gi
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10b
    • /
    • pp.34-37
    • /
    • 2003
  • The development and improvement of advanced fuel cell systems is a major topic of current research, since fuel cells are considerably more efficient than other energy converters$^1$. In proton exchange membrane fuel cell and direct methanol fuel cell the polymer membrane represents a key component. The membrane materials fulfill complex requirements. It has to combine electrochemical stability, workability, high ionic conductivity, low permeation of the reactants (methanol etc.) (omitted)

  • PDF

Development of Ionomer Binder Solutions Using Polymer Grinding for Solid Alkaline Fuel Cells (고분자 분쇄 기술을 활용한 고체 알칼리연료전지용 이오노머 바인더 용액 개발)

  • Shin, Mun-Sik;Kim, Do-Hyeong;Kang, Moon-Sung;Park, Jin-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.19 no.3
    • /
    • pp.107-113
    • /
    • 2016
  • In this study, an anion-exchange ionomer solution was prepared by grinding poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) in liquid nitrogen for solid alkaline fuel cells (SAFCs). Type of quaternized PPO (QPPO) solutions was controlled by grinding time. The ionomer binder solutions were characterized in terms of dispersity, particle size, and electrochemical properties. As a result, ionomer binder solutions using grinded polymer showed higher dispersion and smaller particle size distribution than that using non-grinded polymer. The highest ionic conductivity and IEC of the membrane recast by using BPPO-G120s were $0.025S\;cm^{-1}$ and $1.26meq\;g^{-1}$, respectively.

Preparation and Characterization of Chitosan Membranes Cross-linked Using Poly(2,6-dimethyl-1,4-phenylene oxide) Polymer and Chitosan (Poly(2,6-dimethyl-1,4-phenylene oxide) 고분자와 키토산을 이용한 가교막 제조 및 특성평가)

  • Son, Tae Yang;Ko, Tae Ho;Jung, Ji Hye;Hong, Jun Ui;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.28 no.3
    • /
    • pp.205-213
    • /
    • 2018
  • In this study, cross-linked membrane were successfully prepared by using brominated PPO (Br-PPO) as the main polymer chain. Chitosan and quaternary ammonium modified chitosan (QA-chitosan) was used as the cross linking agents. The cross linked membranes were post-functionalized by using trimethylamine solution. The degree of cross linking was also controlled by varying the ratio of cross linking agent. The applicability of the cross-linked membrane (A-PPO + chitosan, A-PPO + QA-chitosan) as ion exchange membranes was verified through various characterization techniques. The cross-linked membrane using QA-chitosan as cross linking agent was found to be better in performance than the membrane using pristine chitosan cross linking agent. As the percentage of QA-chitosan increased, the ion exchange capacity from 1.18 meq/g to 1.53 meq/g and water uptake from 21.6% to 42.2% was improved.

Gas Separation Membranes Prepared from Polystyrene-block-Polybutadiene/Poly(phenylene oxide) Blends for Carbon Dioxide Separation from a Flue Gas (배기가스로부터 이산화탄소 분리를 위한 SB 이종 블록공중합체/즐리페닐렌 옥사이드 블렌드 기체분리막)

  • Jung, You-Sun;Kim, Chang-Keun
    • Polymer(Korea)
    • /
    • v.32 no.6
    • /
    • pp.593-597
    • /
    • 2008
  • To separate carbon dioxide from a flue gas, membranes for gas separation was fabricated from polystyrene-b-polybutadiene (SB) diblock copolymer blends with poly(phenylene oxide), PPO. SB diblock copolymer formed miscible blends with PPO in the experimental range (lower than or equal to 70 wt% PPO). When the blend contained PPO whose composition is in the range of 40-50 wt%, the discontinuous phase of polybutadiene block in SB diblock copolymer, was changed to discrete phase, while polystyrene blocks containing PPO was changed to the continuous phase. A sudden decrease of the gas permeability and a sudden increase of the gas selectivity was observed at these blend compositions. A gas separation membranes having excellent mechanical properties and exhibiting advantages in gas permeability and selectivity could be fabricated from blends containing more than 50 wt% PPO.

Preparation and Characterization of Anion Exchange Membrane Based on Crosslinked Poly(2,6-dimethyl-1,4-phenylene oxide) with Spacer-type Conducting Group (Spacer-type 전도기가 도입된 가교형 poly(2,6-dimethyl-1,4-phenylene oxide) 음이온 교환막의 제조 및 특성평가)

  • Lim, Haeryang;Kim, Tae-Hyun
    • Membrane Journal
    • /
    • v.27 no.5
    • /
    • pp.425-433
    • /
    • 2017
  • As the problems related to the environmental pollution such as carbon dioxide emission are emerging, the need for the renewable energy and environmentally friendly energy is getting intense. Fuel cells are eco-friendly energy generation devices that generate electrical energy and produce water as a sole by-product. Compared to the traditional proton exchange membrane fuel cell (PEMFC), anion exchange membrane alkaline fuel cell (AEMAFC) has a main advantage of possibility to use low cost metal catalysts due to its faster kinetics. The AEM, which conducts $OH^-$ ions, should possess high ion conductivity as well as high chemical stability at high pH conditions. We hereby introduce a crosslinked poly(2,6-dimethyl-1,4-phenylene oxide) having a spacer-type conducting group as novel AEM, and report a high ion conductivity ($67.9mScm^{-1}$ at $80^{\circ}C$) and mechanical properties (Young's modulus : 0.53 GPa) as well as chemical stability (6.8% IEC loss at $80^{\circ}C$ for 1,000 h,) for the developed membrane.

Electro-optical properties of organic EL device (유기 EL 소자의 전기-광학적 특성)

  • Kim, Min-Soo;Park, Lee-Soon;Park, Se-Kwang
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.252-257
    • /
    • 1997
  • Organic EL devices, which have the sing3e-layer structure of ITO(indium-tin-oxide) /PPV(poly(p-phenylene vinylene))/cathode and the double-layer structure of ITO/PVK (poly(N- vinylcarbazole)) /PPV/cathode, were fabricated and their electro-optical properties were investigated. Experimental results, in single-layer structure, shown that the increment of temperature for thermal conversion of PPV film from $140^{\circ}C$ to $260^{\circ}C$ decreases the maximum luminance from $118.8\;cd/m^{2}$(20V) to $21.14\;cd/m^{2}$(28V) and shift the maximum peak of EL spectrum from 500nm to 580nm. The lower the work function of cathode is, the more the luminance and injection current of device. In double-layer structure, as the concentration of PVK solution decreases from 0.5 wt% to 0.05 wt%, the luminance of device increases from $70.71\;cd/m^{2}$(32V) to $152.7\;cd/m^{2}$(26V).

  • PDF

MEMBRANES FOR GAS AND LIQUID SEPARATIONS

  • Golemme, Giovanni;Bove, Lucia;Clarizia, Gabriele;Muzzalupo, Rita;Ranieri, Giuseppe;Nam, Sang-Yong;Drioli, Enrico
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1999.07a
    • /
    • pp.27-30
    • /
    • 1999
  • Poly(phenylene oxide)s were used to prepare flat, integrally skinned self-supporthed asymmetric membranes by dry-wet phase separption. The intrinsic ideal gas selectivity of poly- (2,6-dimethy-1,4-phenylene oxide) (PMPO) was retained in the membranes, and improved by a coating with silicone rubber. Polymers of the same class were coated of UF supports with a silicon rubber gutter layer, yielding composite membranes with high flux but lower selectivity. The effect of th glutaraldehyde cross-linking of sodium alginate (SA) membranes on the mobility of water and ethanol has been studied with pfg nmr. Crosslinking reduces water self-diffusion, and does not seem to be stable on the timescale of weeks.

  • PDF

Synthesis of Aminated Poly(ether imide) for the Preparation of Bi-polar Membranes and Their Application to Hypochlorite Production through the Surface Direct Fluorination (바이폴라막 제조를 위한 폴리에테르이미드의 아민화 합성 및 표면불소화를 통한 차아염소산 생성)

  • Kim, Cheong Seek;Kang, SuYeon;Rhim, Ji Won;Park, Soo-Gil
    • Polymer(Korea)
    • /
    • v.39 no.2
    • /
    • pp.338-345
    • /
    • 2015
  • Poly(phenylene oxide) (PPO) and polyether imide (PEI) were sulfonated and aminated to create sulfonated poly(phenylene oxide) (SPPO) and aminated polyether imide (APEI), respectively. Characterization of the SPPO and APEI were performed via measurements of FTIR, thermogravimetry (TGA), swelling degree, ion exchange capacity (IEC), and ion conductivity. Next, the surfaces of these membranes were modified by surface fluorination at room temperature. The surface fluorinated SPPO and APEI membranes underwent characterization again for the mentioned measurements to determine any differences. The 3 types of bi-polar membranes were prepared by varying the IEC of the APEI at a fixed SPPO IEC value, which were applied to the low and high NaCl concentration of feed solution at the different current density, respectively. The hypochlorite concentration derived from the surface fluorinated membranes was dependent on the IEC of the APEI and ranged from 491 to 692 ppm at $80mA/m^2$. At low current density of $5mA/m^2$, the hypochlorite concentrations ranged from 18 to 28 ppm for the 4 hrs surface fluorinated membranes and their durability increased greatly.