DOI QR코드

DOI QR Code

Preparation and Characterization of Chitosan Membranes Cross-linked Using Poly(2,6-dimethyl-1,4-phenylene oxide) Polymer and Chitosan

Poly(2,6-dimethyl-1,4-phenylene oxide) 고분자와 키토산을 이용한 가교막 제조 및 특성평가

  • Son, Tae Yang (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University) ;
  • Ko, Tae Ho (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University) ;
  • Jung, Ji Hye (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University) ;
  • Hong, Jun Ui (Department of polymer science and engineering, Gyeongsang National University) ;
  • Nam, Sang Yong (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University)
  • 손태양 (경상대학교 나노신소재융합공학과) ;
  • 고태호 (경상대학교 나노신소재융합공학과) ;
  • 정지혜 (경상대학교 나노신소재융합공학과) ;
  • 홍준의 (경상대학교 고분자공학과) ;
  • 남상용 (경상대학교 나노신소재융합공학과)
  • Received : 2018.06.28
  • Accepted : 2018.06.30
  • Published : 2018.06.30

Abstract

In this study, cross-linked membrane were successfully prepared by using brominated PPO (Br-PPO) as the main polymer chain. Chitosan and quaternary ammonium modified chitosan (QA-chitosan) was used as the cross linking agents. The cross linked membranes were post-functionalized by using trimethylamine solution. The degree of cross linking was also controlled by varying the ratio of cross linking agent. The applicability of the cross-linked membrane (A-PPO + chitosan, A-PPO + QA-chitosan) as ion exchange membranes was verified through various characterization techniques. The cross-linked membrane using QA-chitosan as cross linking agent was found to be better in performance than the membrane using pristine chitosan cross linking agent. As the percentage of QA-chitosan increased, the ion exchange capacity from 1.18 meq/g to 1.53 meq/g and water uptake from 21.6% to 42.2% was improved.

본 연구에서는 가교막을 poly(2,6-dimethyl-1,4-phenylene oxide)(PPO)에 브롬화반응을 통해 제조한 Br-PPO를 주사슬로 성공적으로 제조하였고, 키토산과 4차암모늄이 포함된 키토산을 가교제로 사용하였다. 제조된 가교막은 트리메틸아민 용액에 함침하여 후처리를 진행하였다. 그리고 가교도는 가교제 비율을 이용하여 조절하였다. 이렇게 제조된 A-PPO + chitosan 가교막과 A-PPO + QA-chitosan 가교막의 이온교환막으로써의 가능성을 여러 특성평가로 확인하였다. Chitosan을 사용한 가교막보다 QA-chitosan을 사용한 가교막이 가교가 더 잘 이루어졌으며, QA-chitosan의 함량이 증가할수록 이온교환용량이 1.18 meq/g에서 1.53 meq/g까지 증가하는 경향, 함수율이 21.6%에서 42.2%까지 증가하는 경향을 나타내었다.

Keywords

References

  1. Y. J. Yuk and K. H. Youm, "Affinity filtration chromatography of proteins by chitosan and chitin membranes: 2. separation of BSA and lysozyme", Membr. J., 19, 113 (2009).
  2. T. W. Son and G. S. Lee, "Chitosan-electrolyte complex", Polymer Science and Technology, 15, 335 (2004). https://doi.org/10.1002/pat.480
  3. X. Qu, A. Wirsén, and A. C. Albertsson, "Effect of lactic/glycolic acid side chains on the thermal degradation kinetics of chitosan derivatives", Polymer, 41, 4841 (2000). https://doi.org/10.1016/S0032-3861(99)00704-1
  4. M. Darder, M. Colilla, and E. Ruiz-Hitzky, "Biopolymer-clay mamocomposites based on chitosan intercalated in montmorillonite", Chem. Mater., 15, 3774 (2003). https://doi.org/10.1021/cm0343047
  5. Y. M. Lee, S. Y. Nam, B. K. Oh, B. R. Lee, D. J. Woo, K. H. Lee, J. M. Won, and B. H. Ha, "Dehydration of alcohol solutions through cross-linked chitosan, composite membranes- I. preparation of chemically crosslinked chitosan composite membranes and ethanol dehydration", Membr. J., 6, 37 (1996).
  6. Y. M. Lee, S. Y. Nam, J. K. Yoo, and K. O. Yoo, "Dehydration of alcohol solutions through cross-linked chitosan composite membranes- II. dehydration of ethanol solution through modified chitosan composite membranes", Membr. J., 6, 242 (1996).
  7. Y. M. Lee, S. Y. Nam, J. K. Yoo, and K. O. Yoo, "Dehydration of alcohol solutions through cross-linked chitosan composite membranes- III. effects of substrate, neutralization and active layer thickness on pervaporation of water/ethanol mixture", Membr. J., 6, 250 (1996).
  8. H. Li and L. Zou, "Ion-exchange membrane capacitive deionization: A new strategy for brackish water desalination", Desalination, 275, 62 (2011). https://doi.org/10.1016/j.desal.2011.02.027
  9. M. Wang, X. Xu, Y. Li, T. Lu, and L. Pan, "Enhanced desalination performance of anion-exchange membrane capacitive deionization via effectively utilizing cathode oxidation", Desalination, 443, 221 (2018). https://doi.org/10.1016/j.desal.2018.06.002
  10. V. Vijayalekshmi and D. Khastgir, "Chitosan/partially sulfonated poly(vinylidene fluoride) blends as polymer electrolyte membranes for direct methanol fuel cell applications", Cellulose, 25, 661 (2018). https://doi.org/10.1007/s10570-017-1565-6
  11. C. Wang, B. Mo, Z. He, Q. Shao, D. Pan, E. Wujick, J. Guo, X. Xie, X. Xie, and Z. Guo, "Crosslinked norbornene copolymer anion exchange membrane for fuel cells", J. Membr. Sci., 556, 118 (2018). https://doi.org/10.1016/j.memsci.2018.03.080
  12. D. J. Kim and S. Y. Nam, "Research trend of organic/inorganic composite membrane for polymer electrolyte membrane fuel cell", Membr. J., 22, 155 (2012).
  13. N. R. Kil'deeva, P. A. Perminov, L. V. Vladimirov, V. V. Novikov, and S. N. Mikhailov, "On the mechanism of the reaction of glutaraldehyde with chitosan", Russ. J. Bioorg. Chem., 35, 360 (2009). https://doi.org/10.1134/S106816200903011X
  14. E. P. Azevedo and V. Kumar, "The use of a novel aldehyde-functionalized chitosan hydrogel to prepare porous tubular scaffolds for vascular tissue engineering applications", Quim. Nova., 39, 1071 (2016).
  15. M. M. Khaing, N. Chen, C. Long, Y. Li, F. Wang, and H. Zhu, "Chitosan modified poly(2,6-dimethyl-1, 4-phenylene oxide) for anionic exchange membrane in fuel cell technology", Polym. Plast. Technol. Eng., 57, 1121 (2018). https://doi.org/10.1080/03602559.2017.1373396
  16. S. Sayed and A. Jardine, "Chitosan derivatives as important biorefinery intermediates. quaternary tetraalkylammonium chitosan derivatives utilized in anion exchange chromatography for perchlorate removal", Int. J. Mol. Sci., 16, 9064 (2015). https://doi.org/10.3390/ijms16059064
  17. T. Y. Son, D. H. Choi, C. H. Park, and S. Y. Nam, "Preparation and electrochemical characterization of membranes using submicron sized particles with high ion exchange capacity for electro-adsorptive deionization", J. Nanosci. Nanotechnol., 17, 7743 (2017). https://doi.org/10.1166/jnn.2017.14799
  18. H. S. Choi, C. H. Rhyu, S. U. Lee, C. S. Byun, and G. J. Hwang, "Study on anion exchange membrane for the alkaline electrolysis", Trans. Korea. Hydrog. New. Energy. Soc., 22, 184 (2011).