• 제목/요약/키워드: poly(methyl methacrylate) microspheres

검색결과 12건 처리시간 0.031초

Low Temperature Suspension Polymerization of Methyl Methacrylate for the Preparation of High Molecular Weight Poly(methyl methacrylate)/Silver Nanocomposite Microspheres

  • Yeum, Jeong-Hyun;Ghim, Han-Do;Deng, Yulin
    • Fibers and Polymers
    • /
    • 제6권4호
    • /
    • pp.277-283
    • /
    • 2005
  • In order to prepare high molecular weight poly(methyl methacrylate) (PMMA)/silver nanocomposite microspheres, methyl methacrylate was suspension-polymerized in the presence of silver nanoparticles at low temperature with 2,2'-azobis(2,4-dimethylvaleronitrile) as an initiator. The rate of conversion was increased by increasing the initiator concentration. When silver nanoparticles were added, the rate of polymerization decreased slightly. High monomer conversion (about $85\%$) was obtained in spite of low polymerization temperature of $30^{\circ}C$. Under controlled conditions, PMMA/silver microspheres with various number-average degrees of polymerization (6,000-37,000) were prepared. Morphology studies revealed that except for normal suspension microspheres with a smooth surface, a golf ball-like appearance of the microspheres was observed, due to the migration and aggregation of the hydrophilic silver nanoparticles at the sublayer beneath the microsphere's surface.

현탁중합에 의한 폴리(메틸 메타크릴레이트)/은 미세입자 제조에 은 나노입자의 개질이 미치는 영향 (Effect of Modification of Silver Nanoparticles on the Preparation of Poly(methyl methacrylate)/Silver Microspheres via Suspension Polymerization)

  • 지병철;이은미;염정현
    • 폴리머
    • /
    • 제34권4호
    • /
    • pp.341-345
    • /
    • 2010
  • 현탁중합에 의한 폴리(메틸 메타크릴레이트)((poly(methyl methacrylate)(PMMA))/은 미세입자 제조시 사용된 은 나노입자가 중합속도 및 PMMA 미세입자의 형태에 미치는 영향을 고찰하였다. 은 나노입자의 친수성 정도 는 중합속도 및 PMMA/은 미세입자의 형태에 큰 영향을 주었다. 개질된 은 나노입자를 이용하여 중합한 경우에 중합 속도가 약간 증가하였다. 중합온도가 낮음에도 불구하고 85% 이상의 전환율을 가지는 PMMA/은 미세입자를 제조할 수 있었다. 사용된 은 나노입자 표면의 친수성 정도에 따라 중합 후 미세입자의 표면은 볼록한 모양과 오목한 모양의 입자가 제조되었다. 친수성 정도가 감소된 은 나노입자를 이용하여 현탁중합된 미세입자가 안정적인 나노복합체를 형성하였다.

Preparation of Ultra Fine Poly(methyl methacrylate) Microspheres in Methanol-enriched Aqueous Medium

  • Shim, Sang-Eun;Kim, Kijung;Sejin Oh;Soonja Choe
    • Macromolecular Research
    • /
    • 제12권2호
    • /
    • pp.240-245
    • /
    • 2004
  • Monodisperse PMMA micro spheres are prepared by means of a simple soap-free emulsion polymerization in methanol-enriched aqueous medium in a single step process. The size and uniformity of the microspheres are dependent on the polymerization temperature. In a stable system, the uniformity is improved with the polymerization time. The most uniform and stable micro spheres are obtained under mild agitation speed of 100 rpm at 70$^{\circ}C$. The monodisperse PMMA microspheres in the size range of 1.4-2.0 $\mu\textrm{m}$ having less than 5% size variation are successfully achieved with varying concentrations of monomer and initiator. As the monomer and initiator concentrations increase, the larger micro spheres with enhanced uniformity are obtained. However, the decreased amount of water induces the polydisperse PMMA particles due to the generation of secondary particles.

Thermally Robust Highly Crosslinked Poly(methyl methacrylate-co-divinyl benzene) Microspheres by Precipitation Polymerization

  • Shim, Sang-Eun;Sunhye Yang;Hyejeon Jung;Soonja Choe
    • Macromolecular Research
    • /
    • 제12권2호
    • /
    • pp.233-239
    • /
    • 2004
  • We prepared thermally robust fully crosslinked poly(methyl methacrylate-co-divinyl benzene) [poly(MMA-co-DVB)]microspheres successfully by precipitation polymerization in the absence of a stabilizing agent. The DVB concentration plays a pivotal role not only in the formation of the individually stable microspheres but also in the polymerization characteristics, including the particle size, the uniformity of size, the polymerization yield, and the thermal properties. The number-average diameter of the microspheres increased linearly, from 0.72 to 2.15 $\mu\textrm{m}$, and the particle size distribution became narrower, by elevating the uniformity from 1.35 to 1.12, as the DVB concentration increased from 20 to 75 mol%. In addition, the yield of the polymerization increased, from 73.4 to 98.6%, as the DVB concentration increased. Since the prepared particles possess fully crosslinked microstructures, no glass transition temperatures were observed, but all the samples prepared with DVB concentrations ranging from 20 to 75 mol% possess enhanced thermal properties. Based on the DSC and TGA data, the thermal stability of the mesospheres prepared by the precipitation polymerization is significantly improved as a result of crosslinking with DVB.

Size and Uniformity Variation of Poly(MMA-co-DVB) Particles upon Precipitation Polymerization

  • Yang, Sun-Hye;Shim, Sang-Eun;Lee, Hui-Je;Kim, Gil-Pyo;Choe, Soon-Ja
    • Macromolecular Research
    • /
    • 제12권5호
    • /
    • pp.519-527
    • /
    • 2004
  • Stable poly(methyl methacrylate-co-divinylbenzene) (poly(MMA-co-DVB)) microspheres were prepared by precipitation polymerization using acetonitrile as the main medium under various polymerization conditions, including modifications of the agitation speed, monomer and initiator concentrations, DVB content in the monomer mixture, and the use of various cosolvents. Gentle agitation was required to obtain smooth spherical particles. The individually stable microspheres were obtained at monomer concentrations of up to 15 vol% in an acetonitrile medium. The number-average diameter increased linearly with respect to increases in the monomer and initiator concentrations. We found, however, that the uniformity of the microspheres was independent of the variation of the polymerization ingredients because nuclei formation was solely influenced by the crosslinking reaction of the monomers. We obtained higher yields for the polymerization at higher concentrations of monomer and initiator. The concentration of DVB in the monomer mixture composition played an important role in determining not only the size of the microspheres but also the yield of the polymerization. In addition, although we employed various cosolvents as the polymerization medium, we found that acetonitrile/2-methoxyethanol was the only system that provided spherical particles without coagulation. This finding indicates that the precipitation polymerization is strongly dependent on the solvent used as the medium.

Preparation of Highly Cross-Linked, Monodisperse Poly(methyl methacrylate) Microspheres by Dispersion Polymerization; Part II. Semi-continuous Processes

  • Lee, Ki-Chang;Lee, Sang-Yun
    • Macromolecular Research
    • /
    • 제16권4호
    • /
    • pp.293-302
    • /
    • 2008
  • In our previous publication, the problem of particle deformation and coagulation at the nucleation stage in the presence of cross-linker was intensely studied by seeded batch dispersion polymerization of methyl methacrylate (MMA). In the present work, highly cross-linked, monodisperse PMMA particles were prepared under various reaction conditions by seeded semi-continuous process. Monodisperse, $6.5{\mu}m$-diameter PMMA particles containing up to 8 wt% of DVB or EGDMA were successfully made by seeded semi-continuous process and multi-semi-continuous addition process, respectively. Therefore, this study shows that seeded semi-continuous process is more effective and efficient to prepare highly cross-linked, monodisperse particles than non-seeded and seeded batch processes.

Preparation of Highly Cross-linked, Monodisperse Poly(methyl methacrylate) Microspheres by Dispersion Polymerization; Part I. Batch Processes

  • Lee, Ki-Chang;Lee, Sang-Yun
    • Macromolecular Research
    • /
    • 제15권3호
    • /
    • pp.244-255
    • /
    • 2007
  • Nucleation is the most sensitive stage in the preparation of highly cross-linked, monodisperse microspheres by dispersion polymerization, since the addition of a small amount of cross-linker results in particle deformation and coagulation. To overcome these problems, $5\;{\mu}m$ poly(methyl methacrylate) seed particles prepared by dispersion polymerization were used in the preparation of mono disperse, cross-linked PMMA particles containing up to 7 wt% divinylbenzene by seeded batch dispersion polymerization. Spherical particles with a narrow size distribution containing up to 8 wt% of EGDMA were prepared by seeded multi-batch dispersion polymerization processes. These particles were identified by scanning electron microscopy and DSC.

상구조가 조절된 고분자 미립구에서 자외선 흡수제의 거동에 대한 연구 (New Photochemistry of UV-Absorbing Chemicals in Phase-Controlled Polymer Microspheres)

  • 이종석;김진웅;김준오;한상훈;장이섭
    • 대한화장품학회지
    • /
    • 제30권3호
    • /
    • pp.361-367
    • /
    • 2004
  • 본 연구는 poly(methyl methacrylate) (PMMA) 마이크로 입자 내의 상 조절을 통하여 자외선 A 흡수제인 butyl metho-xydibenzoylmethane (BMDM)을 효과적으로 안정화시킨 새로운 자외선 흡수 시스템에 관한 것으로, 마이크로 입자 내의 BMDM의 광학특성을 고분자와의 상 특성에 연관하여 해석함으로써 자외선 A 흡수제의 분자거동과 광 에너지 흡수 거동을 체계적으로 이해하고자 하였다. 본 연구에서는 고분자 마이크로 입자 내에서 BMDM의 상 특성을 제어하여, BMDM의 광 및 열 안정성을 유지하면서 자외선 A를 효과적으로 차단할 수 있었다. 본 연구를 통하여 고분자 마이크로 입자 내에 자외선 흡수제의 상 특성을 조절하는 것이 자외선 흡수제를 함유하는 화장품 제형 내에서 광화학 및 광 안정도를 결정하는 중요한 인자임을 알 수 있었다.

Fabrication of Macroporous Carbon Foam with Uniform Pore Size Using Poly(methyl methacrylate) Particles As The Template

  • Kim, Jin-Sil;Rhym, Young-Mok;Shim, Sang-Eun
    • 한국분말재료학회지
    • /
    • 제18권2호
    • /
    • pp.129-134
    • /
    • 2011
  • Herein, macroporous carbon materials were readily prepared by carbonization of cured body of resorcinol and formaldehyde using poly(methyl methacrylate) colloid microspheres which were employed as the template in the gelation of resorcinol with formaldehyde. The gel in the water was solvent exchanged with methanol and the wet gel was dried. After carbonization of the template-gel composite at $800^{\circ}C$, it was found that pores were left corresponding to the size of the template, yielding carbon materials with a fine porous structure with enlarged surface area and significant porosity. Properties of the carbon foams including the structure, morphology, thermal stability, and porosity were investigated. Finally, it was concluded that the method using polymer colloids as the template provided a facile route to prepare carbon foams.

Monodisperse Micrometer-Ranged Poly(methyl methacrylate) Hybrid Particles Coated with a Uniform Silica Layer

  • Han, Seung-Jin;Shin, Kyo-Min;Suh, Kyung-Do;Ryu, Jee-Hyun
    • Macromolecular Research
    • /
    • 제16권5호
    • /
    • pp.399-403
    • /
    • 2008
  • Monodisperse, micron-sized, hybrid particles having a core-shell structure were prepared by coating the surface of poly(methyl methacrylate)(PMMA) microspheres with silica and by copolymerizing acrylamide (AAm) to supply the hydrogen bonding effect by means of the amide groups. Tetraethoxysilane (TEOS) was then slowly dropped onto the medium under certain conditions. Because of the hydrogen bonding between the amide of the PMMA particles and the hydroxyl group of the hydrolyzed silanol, a silica shell was generated on the PMMA core particles. The morphology of the hybrid particles was investigated with transmission (TEM) and scanning (SEM) electron microscopy as a function of the medium conditions and the amount of TEOS. Improved thermal properties were observed by TGA analysis.