Effect of Modification of Silver Nanoparticles on the Preparation of Poly(methyl methacrylate)/Silver Microspheres via Suspension Polymerization

현탁중합에 의한 폴리(메틸 메타크릴레이트)/은 미세입자 제조에 은 나노입자의 개질이 미치는 영향

  • Ji, Byung-Chul (Department of Advanced Organic Materiais Science and Engineering, Kyungpook National University) ;
  • Lee, Eun-Mi (Department of Advanced Organic Materiais Science and Engineering, Kyungpook National University) ;
  • Yeum, Jeong-Hyun (Department of Advanced Organic Materiais Science and Engineering, Kyungpook National University)
  • 지병철 (경북대학교 기능물질공학과) ;
  • 이은미 (경북대학교 기능물질공학과) ;
  • 염정현 (경북대학교 기능물질공학과)
  • Received : 2010.02.02
  • Accepted : 2010.03.08
  • Published : 2010.07.25

Abstract

Effects of modification of silver nanoparticles on the polymerization rate and morphology of poly(methyl methacrylate)(PMMA)/silver microspheres prepared by suspension polymerization of MMA were investigated. The silver nanoparticles and their surface hydrophilicity played an important role in the polymerization rate and the morphology of poly(methyl methacrylate) (PMMA)/silver microspheres. The polymerization rate increased slightly with modified silver nanoparticles. PMMA/silver microspheres with conversion up to 85% were obtained in spite of the low polymerization temperature. Due to the change of hydrophilicity of silver nanoparticles, different appearances of the microspheres having golf ball-like convex surfaces or concave surfaces were observed. As the hydrophilicity of silver was decreased, stable nanocomposites were prepared.

현탁중합에 의한 폴리(메틸 메타크릴레이트)((poly(methyl methacrylate)(PMMA))/은 미세입자 제조시 사용된 은 나노입자가 중합속도 및 PMMA 미세입자의 형태에 미치는 영향을 고찰하였다. 은 나노입자의 친수성 정도 는 중합속도 및 PMMA/은 미세입자의 형태에 큰 영향을 주었다. 개질된 은 나노입자를 이용하여 중합한 경우에 중합 속도가 약간 증가하였다. 중합온도가 낮음에도 불구하고 85% 이상의 전환율을 가지는 PMMA/은 미세입자를 제조할 수 있었다. 사용된 은 나노입자 표면의 친수성 정도에 따라 중합 후 미세입자의 표면은 볼록한 모양과 오목한 모양의 입자가 제조되었다. 친수성 정도가 감소된 은 나노입자를 이용하여 현탁중합된 미세입자가 안정적인 나노복합체를 형성하였다.

Keywords

Acknowledgement

Supported by : 한국산업기술진흥원

References

  1. H. W. Coover and J. M. McIntyre, Jr., in Encyclopedia of Polymer Science and Engineering, H. F. Mark, N. M. Bikales, C. G. Overberger, G. Menges, and J. I. Kroschwitz, Editors, John Wiley and Sons, New York, Vol 1, p 234 (1985).
  2. O. Nuyken and G. Lettermann, in Handbook of Polymer Synthesis, H. R. Kricheldorf. Editor, Marcel Dekker, New York, Part A, p 223 (1992).
  3. K. H. Kim, W. H. Jo, J. Y. Jho, M. S. Lee, and G. T. Lim, Fiber Polym., 4, 97 (2003). https://doi.org/10.1007/BF02875454
  4. H. W. Cho, S. H. Lee, J. H. So, H. Y. Jaung, and K. J. Yoon, Fiber Polym., 5, 239 (2004) https://doi.org/10.1007/BF02903007
  5. J. Charnley, J. Bone, J. Surg., 42B, 28 (1960).
  6. J. L. Luna-Xavier, E. Bourgeat-Lami, and A. Guyot, Colloid Polym. Sci., 279, 947 (2001). https://doi.org/10.1007/s003960100520
  7. J. Lee and M. Sena, Colloid Polym. Sci., 273, 76 (1995). https://doi.org/10.1007/BF00655677
  8. M. S. Fleming, T. K. Mandal, and D. R. Walt, Chem. Mater., 13, 2210 (2001). https://doi.org/10.1021/cm010168z
  9. F. Tiarks, K. Landfester, and M. Antonietti, Langmuir, 17, 5775 (2001). https://doi.org/10.1021/la010445g
  10. B. Erdern, E. D. Sudol, V. L. Dimonie, and M. EI-Aasser, J. Polym. Sci., Polym. Chem., 38, 4419 (2000). https://doi.org/10.1002/1099-0518(20001215)38:24<4419::AID-POLA110>3.0.CO;2-X
  11. G. C. Carotenuto, Y. S. Her, and E. Matijevic, Ind. Eng. Chem. Res., 35, 2929 (1996). https://doi.org/10.1021/ie950721k
  12. M. Lira-Cantu and P. Gomez-Romero, Chem. Mater., 10, 698 (1998). https://doi.org/10.1021/cm970107u
  13. Y. Wang and N. Herron, Chem. Phys. Lett., 200, 71 (1992). https://doi.org/10.1016/0009-2614(92)87047-S
  14. R. K. Hailstone, J. Phys. Chem., 99, 4414 (1995). https://doi.org/10.1021/j100013a009
  15. T. Sun and K. Seff, Chem. Rev., 94, 857 (1994). https://doi.org/10.1021/cr00028a001
  16. H. Tada. K. Teranishi, Y. Inubushi, and S. Ito, Langmuir, 16, 3304 (2000). https://doi.org/10.1021/la991315z
  17. U. Nickel, A. zu Castell, K. Poppl, and S. Schneider, Langmuir, 16, 9087 (2000) https://doi.org/10.1021/la000536y
  18. T. Pal, J. Chem. Educ., 71, 679 (1994). https://doi.org/10.1021/ed071p679
  19. Y. Iwata, Zeolite News Lett., 13, 8 (1996).
  20. A. Oya, J. AntIbac. Antifungal. Agenls (Jpn), 24, 429 (1996).
  21. J. S. Lim, E. H. Son, S. J. Hwang, and S. S. Kim, Polymer (Korea), 29, 350 (2005).
  22. G. M. Yang and D. J. Chung, Polymer(Korea), 27, 493 (2003).
  23. P. J. Dowding and B. Vincent, Colloids Surf.,161, 259 (2000). https://doi.org/10.1016/S0927-7757(99)00375-1
  24. J. H. Yeum, S. Qunhui, and Y. Deng, Macromol. Mater. Eng., 290, 78 (2005) https://doi.org/10.1002/mame.200400313
  25. J. H. Yeum and Y. Deng, Colloid Polym. Sci., 283, 1172 (2005). https://doi.org/10.1007/s00396-005-1300-y
  26. J. H. Yeum, H. D. Ghim, and Y. Deng, Fiber Polym., 6, 277 (2005) . https://doi.org/10.1007/BF02875662
  27. T. Vermeulen, G. M. Williams, and G. E. Langlois, Chem. Eng. Prog., 51, 85 (1955).
  28. C. Dahmen, A. N. Sprafke, H. Dieker, M. Wuttig, and G. von Plessen, Appl. Phys. Lett., 88, 011923 (2006). https://doi.org/10.1063/1.2163268