Preparation of Ultra Fine Poly(methyl methacrylate) Microspheres in Methanol-enriched Aqueous Medium

  • Shim, Sang-Eun (Department of Chemical Engineering, Inha University) ;
  • Kim, Kijung (Department of Chemical Engineering, Inha University) ;
  • Sejin Oh (Department of Chemical Engineering, Inha University) ;
  • Soonja Choe (Department of Chemical Engineering, Inha University)
  • 발행 : 2004.04.01

초록

Monodisperse PMMA micro spheres are prepared by means of a simple soap-free emulsion polymerization in methanol-enriched aqueous medium in a single step process. The size and uniformity of the microspheres are dependent on the polymerization temperature. In a stable system, the uniformity is improved with the polymerization time. The most uniform and stable micro spheres are obtained under mild agitation speed of 100 rpm at 70$^{\circ}C$. The monodisperse PMMA microspheres in the size range of 1.4-2.0 $\mu\textrm{m}$ having less than 5% size variation are successfully achieved with varying concentrations of monomer and initiator. As the monomer and initiator concentrations increase, the larger micro spheres with enhanced uniformity are obtained. However, the decreased amount of water induces the polydisperse PMMA particles due to the generation of secondary particles.

키워드

참고문헌

  1. Phys. Rev. Lett. v.58 E.Yablonovitch https://doi.org/10.1103/PhysRevLett.58.2059
  2. Phys. Rev. Lett. v.58 S.John https://doi.org/10.1103/PhysRevLett.58.2486
  3. Adv. Mater. v.15 C.Lopez https://doi.org/10.1002/adma.200300386
  4. Photonic Crystals: Molding the Flow of Light D.Joannopolous;R.D.Meade;J.N.Winn
  5. Macromol. Res. v.11 S.H.Im;O.O.Park;M.H.Kwon https://doi.org/10.1007/BF03218339
  6. Funct. Mater. v.13 Y.Xia;Y.Yin;Y.Lu https://doi.org/10.1002/adfm.200300002
  7. Micropor. Mesopor. Mat. v.44-45 A.Stein https://doi.org/10.1016/S1387-1811(01)00189-5
  8. Curr. Opin. Solid St. M. v.5 A.Stein;R.C.Schroden https://doi.org/10.1016/S1359-0286(01)00022-5
  9. C.R.Chimie v.6 J.Texter https://doi.org/10.1016/j.crci.2003.07.014
  10. Adv. Mater. v.13 A.C.Edringon;A.M.Urbas;P.DeRege;C.X.Chen;T.M.Swager;N.Hadjichristidis;M.Xenidou;L.J.Fetters;J.D.Joannopoulos;Y.Fink;E.L.Thomas https://doi.org/10.1002/1521-4095(200103)13:6<421::AID-ADMA421>3.0.CO;2-#
  11. Langmuir v.19 H.Fudouzi;Y.Xia https://doi.org/10.1021/la034918q
  12. Synthertic Met. v.139 P.Nozar;C.Dionigi;A.Migliori;G.Calestani;L.Cademartiri https://doi.org/10.1016/S0379-6779(03)00286-8
  13. Langmuir v.19 L.Cademartiri;A.Sutti;G.Calestani;C.Dionigi;P.Nozar;A.Migliori https://doi.org/10.1021/la034485r
  14. Appl. Phys. Lett. v.83 P.Ferrand;M.Egen;R.Zentel;J.Seeckamp;S.G.Romanov;C.M.Sotomayor Torres https://doi.org/10.1063/1.1636271
  15. Chem. Mater. v.15 M.Egen;R.Voss;B.Griesebock;R.Zentel;S.Romanov;C.S.Torres https://doi.org/10.1021/cm030087y
  16. J. Chem. Phys. v.118 R.S.Penciu;H.Kriegs;G.Petekidis;G.Fytas;E.N.Economou https://doi.org/10.1063/1.1553763
  17. Chem. Mater. v.15 M.Egen;R.Voss;B.Griesebock;R.Zentel;S.Romanov;C.S.Torres https://doi.org/10.1021/cm030087y
  18. Chem. Mater. v.12 M.Muller;R.Zentel;T.Maka;S.G.Romanov;C.M.Sotomayor Torres https://doi.org/10.1021/cm000192x
  19. Chem. Mater. v.14 M.Egen;R.Zentel https://doi.org/10.1021/cm010375z
  20. Adv. Mater. v.12 Y.ia;B.Gates;Y.Yin;Y.Lu https://doi.org/10.1002/(SICI)1521-4095(200005)12:10<693::AID-ADMA693>3.0.CO;2-J
  21. Phisica E. v.14 L.M.Goldenberg;J.Wagner;J.Stumpe;B.R.Paulke;E.Gornitz
  22. J. Appl. Polym. Sci. v.19 A.M.Homola;M.Inoue;A.A.Robertson https://doi.org/10.1002/app.1975.070191112
  23. J. Colloid Interface Sci. v.207 S.Gu;T.Mogi;K.Konno https://doi.org/10.1006/jcis.1998.5768
  24. Colloid Surf. A v.153 S.Gu;T.Mogi;K.Konno https://doi.org/10.1016/S0927-7757(98)00444-0
  25. Marer. Lett. v.57 J.Zhang;Z.Chen;Z.Wang;W.Zhang;N.Ming https://doi.org/10.1016/S0167-577X(03)00344-6
  26. J. Appl. Polym. Sci. v.71 S.E.Shim;Y.J.Cha;J.M.Byun;S.Choe https://doi.org/10.1002/(SICI)1097-4628(19990328)71:13<2259::AID-APP17>3.0.CO;2-5
  27. Langmuir v.20 Z.Zhou;X.Z.Zhao https://doi.org/10.1021/la035686y
  28. J. Appl. Polym. Sci. v.18 J.McCracken;A.Datyner https://doi.org/10.1002/app.1974.070181115
  29. J. Appl. Polym. Sci. v.26 Y.Chonde;I.Krieger https://doi.org/10.1002/app.1981.070260607
  30. Eur. Polym. J. v.27 F.Twigt;P.Piet;A.L.German https://doi.org/10.1016/0014-3057(91)90037-O
  31. J. Appl. Polym. Sci. v.58 S.A.F.Bon;H. Van Beek;P.Piet;A.L.German https://doi.org/10.1002/app.1995.070580103
  32. Macromol. Theory Simul. v.11 S.W.Prescott;C.M.Fellows;R.G.Gilbert https://doi.org/10.1002/1521-3919(20020201)11:2<163::AID-MATS163>3.0.CO;2-6
  33. Macromolecules v.23 A.J.Paine;W.Luymens;J.McNulty https://doi.org/10.1021/ma00214a012
  34. Polymer(Korea) v.24 S.E.Shim;J.M.Byun;Y.J.Cha;S.Choe