• Title/Summary/Keyword: poly(lactide-co-glycolide) copolymer

Search Result 19, Processing Time 0.019 seconds

poly(D,L-lactide-co-glycolide) nanoparticles제조와 약물방출 거동 및 생분해도

  • Yu, Jeong-Jun;Jeong, Yeong-Il;O, Dong-Seok;Im, Gyun-Taek
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.550-553
    • /
    • 2000
  • The polymeric matrices made with poly(D,L-lactide-co-glycolide) were prepared using copolymer of poly(D,L-lactide) and poly(ethylene glycol) for application of drug delivery systems. Catalyst made use of stannous actoate. Particle size were differ greatly$(435.3{\pm}11.2{\sim}2284.1{\pm}188.5)$ that nanoparticle made use of according to solvent of various kinds. Polymer could a sharp distinction with copolymerized among LE-1, LE-2 and LE-3 of PLA and PEG of content that to examine $^1H-NMR$ of copolymer make refine and reprecipitation. Drug delivery effect at PLGA nanoparticle : PLA amount more then proved highly drug delivery amount that each LE-1, LE-2, LE-3, drug and solvent was 40mg, 20mg and 10mg. Drug delivery effect proved higher 20mg that change(10mg, 20mg, 40mg) at drug feeding amount with LE-2. The first a lot of drug proved delivery. LE-3 most lactide content proved much delivery since biodegradable on PLGA copolymer result from lactide. Also biodegradable rate was highest at LE-3 much of lactide content, because influence at biodegradable effect of lactide by inclusive of soft PEG.

  • PDF

Doxorubicin Release from Core-Shell Type Nanoparticles of Poly(DL-lactide-co-glycolide)-Grafted Dextran

  • Jeong, Young-Il;Choi, Ki-Choon;Song, Chae-Eun
    • Archives of Pharmacal Research
    • /
    • v.29 no.8
    • /
    • pp.712-719
    • /
    • 2006
  • In this study, we prepared core-shell type nanoparticles of a poly(DL-lactide-co-glycolide) (PLGA) grafted-dextran (DexLG) copolymer with varying graft ratio of PLGA. The synthesis of the DexLG copolymer was confirmed by $^1H$ nuclear magnetic resonance (NMR) spectroscopy. The DexLG copolymer was able to form nanoparticles in water by self-aggregating process, and their particle size was around $50\;nm{\sim}300\;nm$ according to the graft ratio of PLGA. Morphological observations using a transmission electron microscope (TEM) showed that the nanoparticles of the DexLG copolymer have uniformly spherical shapes. From fluorescence probe study using pyrene as a hydrophobic probe, critical association concentration (CAC) values determined from the fluorescence excitation spectra were increased as increase of DS of PLGA. $^1H-NMR$ spectroscopy using $D_2O$ and DMSO approved that DexLG nanoparticles have core-shell structure, i.e. hydrophobic block PLGA consisted inner-core as a drug-incorporating domain and dextran consisted as a hydrated outershell. Drug release rate from DexLG nano-particles became faster in the presence of dextranase in spite of the release rate not being significantly changed at high graft ratio of PLGA. Core-shell type nanoparticles of DexLG copolymer can be used as a colonic drug carrier. In conclusion, size, morphology, and molecular structure of DexLG nanoparticles are available to consider as an oral drug targeting nanoparticles.

Synthesis of Poly(DL-lactide-co-glycolide) Copolymers and Its Application (I). Release Characteristics of Clonazepam Using Poly(DL-lactide-co-glycolide) (80:20) Copolymers (Poly(DL-lactide-co-glycolide) 공중합체의 합성과 그 응용 (I). Poly(DL-lactide-co-glycolide)(80:20) 공중합체를 이용한 Clonazepam의 방출특성)

  • Nah, Jae Woon;Lee, Dong Byung;Cho, Chong Su;Jeong, Young Il;Kim, Sung Ho;Kim, Sung Hyun
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.1
    • /
    • pp.92-98
    • /
    • 1998
  • Poly(DL-lactide-co-glycolide) (80:20) was synthesized from DL-lactide and glycolide, and the copolymers was made to micelles containing clonazepam for drug delivery system. The release experiments of the drug from micelles were operated at pH 7.4 phosphate buffer solution $37.0{\pm}0.05^{\circ}C$. The linearly-releasing time ranges of the drug from micelles prepared with the copolymer/drug weight ratio of 20:40, 20:20, and 40:20 (mg) were 50, 41, and 29 days, respectively. So the linearly-releasing time of drug showed the order of micelles 20/40 > micelles 20/20 > micelles 40/20. In short, the formulation allows polymeric micelles to suppress the burst effect of the drug release mechanism, which led to the controlled release pattern and the possibility of drug delivery system for veinous injection.

  • PDF

Preparation of Poly(Dt-lactide-co-glycolide) Nanoparticles by PEG-PPG Diblock Copolymer (PEG-PPG 블록 공중합체를 이용한 폴리(DL-락타이드-co-글리콜라이드) 나노입자의 제조)

  • 정택규;오유미;신병철
    • Polymer(Korea)
    • /
    • v.27 no.4
    • /
    • pp.370-376
    • /
    • 2003
  • Poly(DL-lactide-co-glycolide) nanoparticles were prepared by the modified spontaneous emulsification solvent diffusion method. Polymer solution was prepared by two water-soluble organic solvents, such as ethanol and acetone. Because of its biocompatible nature, PEG-PPG diblock copolymer was used as surfactant and stabilizer. The influence of several preparative variables on the nanoparticle formation, such as type and concentration of stabilizing agent, stirring methods, water/oil phase ratio and polymer concentration were investigated in order to control and optimize the process. After preparation of nanoparticles, particle size and distribution were evaluated by the light scattering particle analyzer. As results, the particle size was 50-200 nm and dispersibility was monodisperse. It was found that the appropriate selections of binary solvent mixtures and polymeric concentrations in both organic and aqueous phases could provide a good yield and favorable physical properties of PLGA nanoparticles.

Non-isothermal Crystallization Behavior of Poly(glycolide-co-ε-caprolactone-co-L-lactide) Block Copolymer (생체분해성 Poly(glycolide-co-ε-caprolactone-co-L-lactide) 블록 공중합물의 비등온 결정화 거동에 관한 연구)

  • Choi, Sei-Young;Song, Seung-Ho
    • Elastomers and Composites
    • /
    • v.49 no.1
    • /
    • pp.13-23
    • /
    • 2014
  • In this work, glycolide, L-lactide and ${\varepsilon}$-caprolactone monomers were polymerized into the triblock copolymers by two step polymerization method and their non-isothermal crystallization behaviors were studied by combination of modified Avrami and Ozawa formula for further analysis of their behaviors. The result showed that PGCLA21 gave the highest value for supercooling analysis and super cooling degree increased with L-lactide content. Crystallization velocity constant, however, showed no significant change. The result of cooling function in specific relative crystallization degree showed that the increase of L-lactide content made an effect on the more enhancement of crystallization velocity of the PGCLA than PGCL. The result of big logF(T) value with the L-lactide content above critical point for PGCLA41 and PGCLA21 showed that bigger cooling velocity needed to gain same crystal size compared with PGCL. This means that it gives negative effect in the increase of crystallization velocity.

Synthesis and Physical Properties of New Biodegradable Polyester-Polypeptide Copolymer

  • Yong Kiel Sung;Chu
    • Journal of Biomedical Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.147-154
    • /
    • 1992
  • Poly (glycolic aclu-co-glycine-L-lactic aclu) has been prepared by rlng opening polymerlzation. The monomer 6-methyl morpholine-2, 5-dlone was synthe-slzed by bromoproplonylation of 2 bromopropionyl bromide with glycine. Glycolide and 6-methyl morpholine-2, 5-dione have been used as starling materials for polydepsipeptides. The synthesized copolymers have been Identlrled by NMR and FT-lR spectrophotometer. The Tg value of poly(glycollc aclu-co glycine-L-tactic acld ) Is In creased with increasing mole fraction of 6-methylmorpholine-2, 5-dlone(60-$84^{\circ}C$). The glass trasltion temperature of poly(glycolic acid-co-glycine-L-lactic-acid) (62-$86^{\circ}C$) is lower than that of poly (L-lactic acrid-co-glycine-L-lactic acid ). The thermal degradation of poly( L-lactic acid-co- glycine-L-lactic acid ) Is decreased with increasing mole fraction of L-lactide. The thermal degrada pion of poly(glycolic acrid-co-91ycine-L-lactic aclu ) is increased with increasing mole Fraction of glycolide.

  • PDF

Poly(DL-Lactide-co-Glycolide) Nanoparticles Used PEG-PPG Diblock Copolymer by Surfactant: Preparation and Loading of Water Insoluble Drug (유화제로서 PEG-PPG 블록 공중합체를 이용한 Poly(DL-Lactide-co-Glycolide) 나노입자: 제조 및 지용성 약물의 로딩)

  • Taek Kyu Jung;Sung Soo Kim;Byung Cheol Shin
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.5
    • /
    • pp.479-486
    • /
    • 2003
  • In this study, poly(DL-lactide-co-glycolide) nanoparticles loaded with water-insoluble vitamins such as vitamin A (Retinol) and vitamin E acetate were prepared by the emulsification diffusion method. Polymer solution was prepared by the two water-miscible organic solvent, such as ethanol and acetone. Because of its biocompatible property, polyethyleneglycol-polypropyleneglycol diblock copolymer was used as surfactant and stabilizer. The influence of some preparative variables on the nanoparticle formation and on the loading efficiency of active agents, such as the type and concentration of stabilizing agent, the stirring methods, the water/oil phase ratio and the polymer concentration were investigated in order to control and optimize the process. After preparation of nanoparticles loaded with active agent, particle size and distribution were evaluated by the light scattering particle analyzer. The loading efficiency of active agents was evaluated by the UV-visible spectroscopy. As the results, particle size were 50-200 nm and dispersibility was monodisperse. The optimum loading efficiency of active agents was observed 50-60%. It was found that the appropriate of selections of binary solvent mixtures and polymeric concentrations in both organic and aqueous phases could provide good yield and favorable physical properties of PLGA nanoparticles.

Mixture Density Measurement of Biodegradable Poly(lactide-co-glycolide) Copolymer in Supercritical Solvents (초임계 용매내에서 생분해성 Poly(lactide-co-glycolide) 공중합체의 혼합물 밀도 측정)

  • 변헌수
    • Polymer(Korea)
    • /
    • v.24 no.4
    • /
    • pp.505-512
    • /
    • 2000
  • The mixture density data for poly(lactide-co-glycolide) [PLGA] with supercritical $CO_2$, CHF$_3$ and CHClF$_2$ were obtained in the temperature range of 27 to 10$0^{\circ}C$ and at pressures as high as 3000 bar (PLGA$_{x}$, Where the molar concentration of glycolide in the backbone, x, range from 0 to 50 mol%). The PLA-$CO_2$, PLA-CHF$_3$, and PLA-CHClF$_2$ systems dissolve in the pressure less than 1430 below 700, and below 100 bar, respectively. The mixture density shows from 1.084 to 1.334 g/cm$^3$ at temperatures from 27 to 93$^{\circ}C$. The PLGA$_{15}$ -$CO_2$ mixture dissolves at pressures of below 1900 bar and the mixture density is in the range of 1.158 to 1.247 g/cm$^3$ at temperatures between 37 and 92$^{\circ}C$. The solubilities of the PLGA$_{25}$ for $CO_2$, CHF$_3$, and CHClF$_2$ are shown to pressure as high as 2390, 1470, and 118 bar, respectively, and the mixture density exhibits iron 1.154 to 1.535 g/cm$^3$ at temperatures from 29 to 81$^{\circ}C$. The PLGA$_{50}$-$CO_2$ system does not dissolve at 24$0^{\circ}C$ and 3000 bar while the PLGA$_{50}$-CHCIF$_2$ does easily at 5$0^{\circ}C$ and 100 bar. The mixture density for the PLGA-CHClF$_2$ system increases even at low pressures as the glycolide molar concentration increases.es.es.

  • PDF

Preparation and Release Behavior of Methoxy poly(ethylene glycol)- poly(L-lactide-co-glycolide) Wafer Containing Albumin (알부민을 함유한 메톡시 폴리(에틸렌 글리콜)- 폴리(L-락타이드-co-글리콜라이드) 웨이퍼의 제조 및 방출거동)

  • 서광수;김문석;김경자;조선행;이해방;강길선
    • Polymer(Korea)
    • /
    • v.28 no.4
    • /
    • pp.328-334
    • /
    • 2004
  • A series of methoxy poly(ethylene glycol) (MPEG)-poly(L-lactide-co-glycolide) (PLGA) diblock copolymers were synthesized by ring-opening polymerization of L-lactide and glycolide with carbitol (134 g/mole) or different molecular weights of MPEG (550, 2000, and 5000 g/mole) as an initiator in presence of Sn(Oct)$_2$. The properties of diblock copolymers were characterized by using $^1$H-NMR, GPC, and XRD. After uniform mixing of block copolymers and 1% albumin bovine-fluorescein isothiocyanate(FITC-BSA) with a freeze miller, the wafers loaded FITC-BSA were fabricated by using a mold with a dimensions of 3 mm${\times}$1mm diameter. The release profiles of FITC-BSA and the pH changes of wafer were examined using pH 7.4 PBS for 30 days at 37$^{\circ}C$. The release profiles of albumin showed fast initial burst as the molecular weights of MPEG increased. As a result of this study, the release behavior of BSA was controlled with introducing MPEG in the block copolymers.

Surface Mmodification of Poly(DL-lactide-co-glycolide) Nanoparticle (Poly(DL-lactide-co-glycolide) 나노입자의 표면 수식)

  • Oh, Yu-Mi;Jung, Taek-Kyu;Chi, Sang-Cheol;Shin, Byung-Cheol
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.6
    • /
    • pp.601-607
    • /
    • 2003
  • We studied on preparation of nanoparticles modified surface using biodegradable polymer, poly(DL-lactide-co-glycolide) (PLGA). Two kinds of PLGA nanoparticles were prepared by a spontaneous emulsification solvent diffusion (SESD) method using cetyltrimethylammonium chloride (CTAC) and tetradecyltrimethylammonium bromide (TTAB) as a cationic surfactant and polyethylene glycol-block-polypropylene glycol copolymer (Lutrol F68) as a nonionic surfactant. Model protein was coated on the surface of nanoparticles by the ionic complexation. The model protein was that influenza vaccine ($H_3N_2,\;H_1N_1$, B strain) labeled with NHS-fluorescein. The sizes of cationic nanoparticles were 140-160 nm and the surface charges were 50-60 mV. The sizes of nonionic nanoprticles were 80-90 nm and the surface charge was -10 mV. After coating vaccine on the surface of nanoparticles, the sizes of cationic nanoparticles were increased to 380-400 nm and the size of nonionic nanoparticles was not increased. The amount of coated vaccine on the cationic nanoparticles was 22.73 ${\mu}g$/mg.