• Title/Summary/Keyword: poly(lactide)

Search Result 250, Processing Time 0.027 seconds

STABILITY AFTER SURGICAL CORRECTION OF MANDIBULAR PROGNATHISM USING BILATERAL SAGGITAL SPLIT RAMUS OSTEOTOMY AND FIXATION WITH POLY-L/DL-LACTIDE COPOLYMER SCREWS ($BIOSORB^{TM}FX$) (하악지 시상 골절단술 이후 흡수성 나사를 사용하여 고정한 환자에서 술 후 안정성에 대한 연구)

  • Kwon, Taek-Kyun;Kim, Yong-Deok;Shin, Sang-Hun;Kim, Uk-Kyu;Kim, Jong-Ryoul;Chung, In-Kyo
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.27 no.2
    • /
    • pp.160-163
    • /
    • 2005
  • This study was designed to assess skeletal stabilily after surgical correction of mandibular prognathism by bilateral saggital split ramus osteotomy(BSSRO) and fixation with absorbable screws. From July 2001 to September 2003, 30 patients with Class III malocclusion were treated with BSSRO and mandibular setback. They underwent fixation with Biosorb$^{TM}$ FX screws. Cephalograms were obtained preoperatibely, 2 or 3 days postoperatively, and about 12 months after the operation. Changes in the position of lower incisor tip, B point, and pogonion were examined on lateral cephalograms. The mean mandibular setback just after surgery was 10.6mm. 12 months after surgery, mean relapse at pogonion represented 17.9% and 15.1% at B point. Our results suggest that fixation of the bony segments with absorbable screws after BSSO may be used effectively in properly selected cases.

BONE TISSUE ENGINEERING USING PLLA/HA COMPOSITE SCAFFOLD AND BONE MARROW MESENCHYMAL STEM CELL (PLLA/HA Composite Scaffold와 골수 줄기세포를 이용한 조직공학적 골재생에 대한 연구)

  • Kim, Byeong-Yol;Jang, Hyon-Seok;Rim, Jae-Suk;Lee, Eui-Seok;Kim, Dong-Hyun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.30 no.4
    • /
    • pp.323-332
    • /
    • 2008
  • Aim of the study: Scaffolds are crucial to tissue engineering/regeneration. Biodegradable polymer/ceramic composite scaffolds can overcome the limitations of conventional ceramic bone substitutes such as brittleness and difficulty in shaping. In this study, poly(L-lactide)/hydroxyapatite(PLLA/HA) composite scaffolds were fabricated for in vivo bone tissue engineering. Material & methods: In this study, PLLA/HA composite microspheres were prepared by double emulsion-solvent evaporation method, and were evaluated in vivo bone tissue engineering. Bone marrow mesenchymal stem cell from rat iliac crest was differentiated to osteoblast by adding osteogenic medium, and was mixed with PLLA/HA composite scaffold in fibrin gel and was injected immediately into rat cranial bone critical size defect(CSD:8mm in diameter). At 1. 2, 4, 8 weeks after implantation, histological analysis by H-E staining, histomorphometric analysis and radiolographic analysis were done. Results: BMP-2 loaded PLLA/HA composite scaffolds in fibrin gel delivered with osteoblasts differentiated from bone marrow mesenchymal stem cells showed rapid and much more bone regeneration in rat cranial bone defects than control group. Conclusion: This results suggest the feasibility and usefulness of this type of scaffold in bone tissue engineering.

The long-term study on the guided tissue regeneration with poly(${\alpha}-hydroxy\;acid$} membranes in beagle dogs (Poly(alpha-hydroxy acids) 제제 생분해성 차폐막의 치주조직 재생유도능력에 관한 조직학적 장기관찰)

  • Rhyu, In-Chul;Ku, Young;Chung, Chong-Pyoung;Han, Soo-Boo;Choi, Sang-Mook
    • Journal of Periodontal and Implant Science
    • /
    • v.27 no.3
    • /
    • pp.633-645
    • /
    • 1997
  • The recent trend of research and development on guided tissue regeneration focuses on the biodegradable membranes, which eliminate the need for subsequent surgical removal. They have demonstrated significant and equivalent clinical improvements to the ePTFE membranes. This study evaluate guided tissue regeneration wound healing in surgically induced intrabony periodontal defects following surgical treatment with a synthetic biodegradable membranes, made from a copolymer of glycolide and lactide, in 8 beagle dogs. After full thickeness flap reflection, exposed buccal bone of maxillary and mandibular canine and premolar was removed surgically mesiodistally and occlusoapically at $6mm{\times}6mm$ in size for preparation of periodontal defects. In experimental sites a customized barrier was formed and fitted to cover the defect. Flap was replaced slightly coronal to CEJ and sutured. Plaque control program was initiated and maintained until completion of the study. In 4, 8, 16 and 24 weeks after surgery, the animals were sacrificed and then undecalcified specimens were prepared for histologic evaluation. Histologic examination indicated significant periodontal regeneration characterized by new connective tissue attachment, cementum formation and bone formation. These membranes showed good biocompatibility throughout experiodontal period. The barriers had been completely resorbed with no apparent adverse effect on periodontal wound healing at 24 weeks. These results implicated that present synthetic biodegradable membrane facilitated guided tissue regeneration in periodontal defect.

  • PDF

Effects of Tetracycline-loaded Poly(L-lactide) Barrier Membranes on Guided Bone Regeneration in Beagle Dog (테트라싸이클린 함유 차폐막을 이용한 골조직 유도 재생에 관한 연구)

  • Choi, Kwang-Soo;Kim, Tak;Yang, Dae-Seung;Kim, Eun-Cheol;You, Hyung-Keun;Shin, Hyung-Shik
    • Journal of Periodontal and Implant Science
    • /
    • v.31 no.2
    • /
    • pp.299-315
    • /
    • 2001
  • Application of membranes for guided tissue regeneration(GTR) have been confined to the subgingival barrier functions; however, many studies have provided evidence that some drugs, including tetracycline, initially can promote the growth of periodontal ligament or alveolar bone in peridontal therapy. Osseous regeneration in periodontal defects is increased by local administration of tetracycline due to its anti-collagenolytic effect, which enhances bone-forming ability via osteoblast cell chemotaxis and reduced bone resorption. The aim of this study was to evaluate effects of tetracycline loaded poly-L-lactide(PLLA) barrier membranes for guided bone regenerative potential. Tetracycline was incorporated into the PLLA membrane with the ratio 10% to PLLA by weight. Ability to guided bone regeneration of the membranes were tested by measuring new bone in the tibial defects($7{\times}10{\times}5\;mm^3$) of the beagle dog for 4,5, and 6 weeks. In control, drug-unloaded PLLA membranes were used in same size of defect. In histologic finding of the defect area, a few inflammatory cells were observed in both groups. These membrane were not perforated by connective tissue and maintained their mechanical integrity for the barrier function for 4-6 weeks. New bone formation was greater in defects covered by tetracycline-loaded membrane than in defects covered by drug- unloaded membranes. In bone regeneration guiding potential test, tetracycline-loaded membrane was more effective than drug- unloaded membranes(p<0.05). These results suggest that tetracycline-loaded PLLA membranes potentially enhance guided bone regenerative efficacy and might be a useful barrier for GTR in periodontal treatment.

  • PDF

Preparation and Characterization of BICND-loaded Multi-Layer PLGA Wafer Containing Glycolide Monomer (글리콜라이드 단량체를 함유한 BICNU 함유 다중층 PLGA웨이퍼의 제조 및 특성결정)

  • 채강수;이진수;정제교;조선행;이해방;강길선
    • Polymer(Korea)
    • /
    • v.28 no.4
    • /
    • pp.335-343
    • /
    • 2004
  • Carmustine (l,3-bis(2-chloroethyI)-1-nitrosourea, BICNU) used as antineoplastic drug for the treatment of brain tumor is not appropriate for the long term delivery, because it has short biological half life. Therefore, poly(D,L-lactide-co-glycolide) (PLGA) is useful as drug carrier for the long term delivery due to bulk erosion property. Glycolide monomer is applied to release of BICNU owing to non-toxic and monomeric components after biodegradation of PLGA. In this study, BICNU-loaded PLGA wafers with or without glycolide monomer were fabricated by conventional direct compression method for the sustained release of BICNU. These wafers were observed for their release profiles of BICNU and degradation rates by SEM, NMR, and GPC. Furthermore, we make multi-layer wafers and compare them with release profiles of conventional wafer. From these results, drug release of BICNU-loaded PLGA wafers was increased with increasing the glycolid monomer contents. We confirmed that glycolide monomer and BICNU contents in barrier-layer influenced the drug release profiles and degradation rate.

Development of Mechanically Expanded Gelatin-AAc-PLLA/PLCL Nanofibers for Vascular Tissue Engineering by Radiation-based Techniques (방사선 기반에 의한 기계적으로 공극을 증가시킨 젤라틴이 도입된 혈관조직공학용 PLLA/PLCL 나노섬유 지지체의 개발)

  • Jeong, Jin-Oh;Jeong, Sung In;Seo, Da-Eun;Park, Jong-Seok;Gwon, Hui-Jeong;Ahn, Sung-Jun;Shin, Young Min;Lim, Youn-Mook
    • Journal of Radiation Industry
    • /
    • v.9 no.4
    • /
    • pp.171-180
    • /
    • 2015
  • Vascular tissue engineering has been accessed to mimic the natural composition of the blood vessel containing intima, media, and adventitia layers. We fabricated mechanically expanded PLLA/PLCL nanofibers using electrospinning and UTM. The pore size of the meshes was increased the gelatin immobilized AAc-PLLA/PLCL nanofibers ($203.30{\pm}49.62microns$) than PLLA/PLCL nanofibers ($59.99{\pm}8.66microns$) after mechanical expansion. To increase the cell adhesion and proliferation, we introduced carboxyl group, and gelatin was conjugated on them. The properties of the PLLA/PLCL nanofibers were analyzed with SEM, ATR-FTIR, TBO staining, and water contact angle measurement, general cell responses on the PLLA/PLCL nanofibers such as adhesion, proliferation, and infiltration were also investigated using smooth muscle cell (SMC). During the SMC culture, the initial viability of the cells was significantly increased on the gelatin immobilized AAc-PLLA/PLCL nanofibers, and infiltration of the cells was also enhanced on them. Therefore, gelatin immobilized AAc-PLLA/PLCL nanofibers and mechanically expanded meshes may be a good tool for vascular tissue engineering application.

Functionalization of Electrospun Nano/Micro-fibrous Scaffolds Using Gamma-ray Irradiation (감마선 조사법을 이용한 전기방사 나노/마이크로 섬유 지지체의 표면 기능화)

  • Lim, Jong-Young;Shin, Young Min;Choi, Jong-Bae;Jeong, Jin-Oh;Gwon, Hui-Jeong;Jeong, Sung In;Park, Jong-Seok;Lim, Youn-Mook
    • Journal of Radiation Industry
    • /
    • v.7 no.1
    • /
    • pp.45-49
    • /
    • 2013
  • In tissue engineering application, a fibrous structure of scaffolds has been issued as an alternative system to regulate cell survival and tissue regeneration, and electrospinning technique has been popularly used to generate fibrous meshes or sheets mimicking the structure of native extracellular matrix (ECM). However, recent strategy in the scaffold development is expanded to provide the structural property as well as a biological property of native ECM, a variety of surface modification techniques have been used to introduce biological property. In this study, we developed biomimetic poly(L-lactide-co-${\varepsilon}$-caprolactone) (PLCL) nano- and micro-fibrous scaffolds as a unique platform with structural and biological properties with native ECM using electrospinning method and gamma-ray irradiation. Surface morphology of the scaffolds was observed by scanning electron microscopy, and alteration of surface property was evaluated with toluidine blue O staining, water contact angle measurement and ATR-FTIR analysis.

In-vitro elution of cisplatin and fluorouracil from bi-layered biodegradable beads

  • Liu, Kuo-Sheng;Pan, Ko-Ang;Liu, Shih-Jung
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.2 no.2
    • /
    • pp.85-96
    • /
    • 2015
  • This study developed biodegradable bi-layered drug-eluting beads and investigated the in-vitro release of fluorouracil and cisplatin from the beads. To manufacture the drug-eluting beads, poly[(d,l)-lactide-co-glycolide] (PLGA) with lactide:glycolide ratios of 50:50 and 75:25 were mixed with fluorouracil or cisplatin. The mixture was compressed and sintered at $55^{\circ}C$ to form bi-layered beads. An elution method was employed to characterize the release characteristic of the pharmaceuticals over a 30-day period at $37^{\circ}C$. The influence of polymer type (i.e., 50:50 or 75:25 PLGA) and layer layout on the release characteristics was investigated. The experiment suggested that biodegradable beads released high concentrations of fluorouracil and cisplatin for more than 30 days. The 75:25 PLGA released the pharmaceuticals at a slower rate than the 50:50 PLGA. In addition, the bi-layered structure reduced the release rate of drugs from the core layer of the beads. By adopting the compression sintering technique, we will be able to manufacture biodegradable beads for long-term drug delivery of various anti-cancer pharmaceuticals.

Membrane Application of Poly(lactic acid) (Poly(lactic acid)의 분리막에의 응용)

  • Nam Sang-Yong;Park Ji-Soon;Rhim Ji-Won;Dorgan J.R.
    • Membrane Journal
    • /
    • v.16 no.2
    • /
    • pp.85-105
    • /
    • 2006
  • Poly(lactic acid) is a linear aliphatic thermoplastic polyester, produced by the ring-opening polymerization of lactides and the lactic acid monomers, which are obtained from the fermentation of sugar feed stocks, corn, etc. PLA has high mechanical, thermal plasticity, fabric-ability, and biocompatibility, So PLA is a promising polymer far various end-use applications. In recent time, the intercalation of polymers from either solution or the melt in the silicate galleries of clay is the best technique to prepare nanocompoiste material which often exhibit remarkable improvement of mechanical, thermal, optical and physicochemical properties when compared with the pure polymer or conventional composites. Layered silicate is naturally abundant, economic, and more importantly benign to the environment.

Synthesis and Degradation Behaviors of PEO/PL/PEO tri-block Copolymers

  • Lee, Soo-Hong;Kim, Soo-Hyun;Kim, Young-Ha;Han, Yang-Kyoo
    • Macromolecular Research
    • /
    • v.10 no.2
    • /
    • pp.85-90
    • /
    • 2002
  • Poly (ethylene oxide)/polylatide/poly(ethylene oxide) (PEO/PL/PEO) tri-block copolymers, which each block is connected by ester bond, were synthesized by coupling reaction of PL with PEO in the presence of pyridine. PL/PEO/PL tri-block copolymer was synthesized by ring opening polymerization of L-lactide initiated by PEO in the presence of stannous octoate. Degradation behavior of the copolymers was investigated in a pH 7.4 phosphate buffer saline (PBS) at 37$\pm$1 $^{\circ}C$. Gel permeation chromatography (GPC) and $^1$H-nuclear magnetic resonance (NMR) were used to monitor the change of mass loss, molecular weight and composition of copolymers. In hydrolytic degradation, the PEO/PL/PEO tri-block copolymer with high PEO contents affected the increase of its mass loss, and resulted in the decrease of its molecular weight as well as PEO composition. However, when PL/PEO/PL and PEO/PL/PEO tri-block copolymers had similar PEO contents, PEO/PL/PEO decreased faster in molecular weight and PEO composition than PL/PEO/PL.