• Title/Summary/Keyword: poly(lactide)

Search Result 250, Processing Time 0.029 seconds

Interaction of Bone Marrow Stromal Stem Cells with Adhesive Protein and Polypeptide-adsorbed Poly(lactide-co-glycolide) Scaffolds (골수유래 간엽줄기세포와 점착성 단백질 및 폴리펩타이드가 흡착된(락티이드/글리콜라이드) 공중합체 지지체와의 상호작용)

  • Choi, Jin-San;Lee, Sang-Jin;Jang, Ji-Wook;Khang, Gil-Son;Lee, Young-Moo;Lee, Bong;Lee, Hai-Bang
    • Polymer(Korea)
    • /
    • v.27 no.5
    • /
    • pp.397-404
    • /
    • 2003
  • The interaction of cell adhesive protein and polypeptide with bone marrow stromal stem cells (BMSCs) grown in tissue engineered films and scaffolds were examined. Several proteins or polypeptide known as cell-adhesive were coated adsorption on poly(lactide-co-glycolide) (PLGA) films and scaffolds and adhesion and proliferation behavior of BMSC on those surfaces were compared. The protein and polypeptide used include collagen IV, fibrinogen, laminin, gelatin, fibronectin, and poly(L-lysine). The protein and polypeptide were adsorbed on the PLGA film surfaces with almost monolayer coverage except poly(L-lysine). BMSCs were cultured for 1, 2, and 4 days on the protein- or polypeptide-adsorbed PLGA films and scaffolds. The cell adhesion and proliferation behaviors were assessed by sulforho damine B assay. It was observed that the protein- or polypeptide-adsorbed surfaces showed better cell adhesion and proliferation than the control.

Mixture Density Measurement of Biodegradable Poly(lactide-co-glycolide) Copolymer in Supercritical Solvents (초임계 용매내에서 생분해성 Poly(lactide-co-glycolide) 공중합체의 혼합물 밀도 측정)

  • 변헌수
    • Polymer(Korea)
    • /
    • v.24 no.4
    • /
    • pp.505-512
    • /
    • 2000
  • The mixture density data for poly(lactide-co-glycolide) [PLGA] with supercritical $CO_2$, CHF$_3$ and CHClF$_2$ were obtained in the temperature range of 27 to 10$0^{\circ}C$ and at pressures as high as 3000 bar (PLGA$_{x}$, Where the molar concentration of glycolide in the backbone, x, range from 0 to 50 mol%). The PLA-$CO_2$, PLA-CHF$_3$, and PLA-CHClF$_2$ systems dissolve in the pressure less than 1430 below 700, and below 100 bar, respectively. The mixture density shows from 1.084 to 1.334 g/cm$^3$ at temperatures from 27 to 93$^{\circ}C$. The PLGA$_{15}$ -$CO_2$ mixture dissolves at pressures of below 1900 bar and the mixture density is in the range of 1.158 to 1.247 g/cm$^3$ at temperatures between 37 and 92$^{\circ}C$. The solubilities of the PLGA$_{25}$ for $CO_2$, CHF$_3$, and CHClF$_2$ are shown to pressure as high as 2390, 1470, and 118 bar, respectively, and the mixture density exhibits iron 1.154 to 1.535 g/cm$^3$ at temperatures from 29 to 81$^{\circ}C$. The PLGA$_{50}$-$CO_2$ system does not dissolve at 24$0^{\circ}C$ and 3000 bar while the PLGA$_{50}$-CHCIF$_2$ does easily at 5$0^{\circ}C$ and 100 bar. The mixture density for the PLGA-CHClF$_2$ system increases even at low pressures as the glycolide molar concentration increases.es.es.

  • PDF

Preparation and Characterization of PEG-PLA(PLGA) Micelles for Solubilization of Rosiglitazone (Rosiglitazone 가용화를 위한 PEG-PLA(PLGA) 고분자 미셀의 제조 및 특성분석)

  • Kim, Yon-Hwan;Im, Jeong-Hyuk;Min, Hyun-Su;Kim, Jun-Ki;Lee, Yong-Kyu;Park, Go-Eun;Cho, Kwang-Jae;Huh, Kang-Moo
    • Polymer(Korea)
    • /
    • v.34 no.3
    • /
    • pp.274-281
    • /
    • 2010
  • In this study, PEG-PLA(or PLGA) amphiphilic di-block copolymers were synthesized by ring opening polymerization of D,L-lactide(or glycolide) and applied to polymeric micelle system for solubilization of a rosiglitazone as diabetes drug. The drug could be efficiently loaded into the polymer micelle by solid dispersion technique, and the drug-loaded micelles were characterized and evaluated as a drug delivery carrier by fluorescence spectrometer, DSC, and DLS measurements. The colloidal stability of drug loaded micelles in aqueous media could be enhanced by addition of 2-hydroxy-N-picolylnitinamide as a hydrotropic agent. The polymer micelles also showed biocompatible and nontoxic properties in vitro cell viability using MTT assay, and the drug loaded micelles were observed to be more effective than free drug for decreasing glucose in blood of rats.

Preparation of BCNU-loaded PLGA Wafers and In Vitro Release Behavior (BCNU 함유 PLGA 웨이퍼의 제조와 생체외 방출거동)

  • 성하수;문대식;강길선;이정식;이해방
    • Polymer(Korea)
    • /
    • v.26 no.1
    • /
    • pp.128-138
    • /
    • 2002
  • 1,3-Bis(2-chloroethyl)-1-nitrosourea (BCNU, Carmustine)-loaded poly(D, L-lactide-co-glycolide) (PLGA, lactide/glycolide mole ratio 75 : 25) microparticles were prepared and fabricated into wafers in an attempt to study the possibility for the treatment of malignant glioma by direct inserting the wafers to the tumor or the cavity remained after surgical resection of the tumor. SEM observation of the microparticles prepared by spray drying method revealed that the microparticles were spherical, i. e. microspheres. Significant reduction of the crystallinity of BCNU encapsulated in PLGA was confirmed by X-ray diffraction and differential scanning calorimetry analyses of the BCNU-loaded PLGA microparticles. Release pattern of BCNU was dependent on several preparation parameters, such as the molecular weight and concentration of PLGA, and initial BCNU loading amount, etc. In vitro release of BCNU was prolonged over 8 weeks with close to zero-order release pattern after initial burst effect. Observations of morphological change of wafers and pH change of release media during release test period confirmed that hydration and degradation of PLGA would be facilitated with an increase of BCNU-loading amount.

Preparation of Biodegradable PLGA Microspheres for Sustained Local Anesthesia and Their in vitro Release Behavior (지속적인 국소마취를 위한 생분해성 PLGA 미립구의 제조와 생체외 방출 거동)

  • 조진철;강길선;최학수;이종문;이해방
    • Polymer(Korea)
    • /
    • v.24 no.5
    • /
    • pp.728-735
    • /
    • 2000
  • Fentanyl-loaded biodegradable poly(L-lactide-co-glycolide) (75 : 25 by mole ratio of lactide to glycolide, PLGA) microspheres (MSs) were prepared to study the possibility for long-acting local anesthesia. We developed the fentanyl base (FB, slightly water-soluble)-loaded PLGA MSs by means of conventional O/W solvent evaporation method. The size of MSs was in the range of 10~150 ${\mu}{\textrm}{m}$. The morphology of MSs was characterized by SEM, and the in vitro release amounts of FB were analyzed by HPLC. The lowest porous cross-sectional morphology and the highest encapsulation efficiency were obtained by using gelatin as an emulsifier. The influences of several preparation parameters, such as emulsifier types, molecular weights and concentrations of PLGA, and initial drug loading amount, etc., have been observed in the release patterns of FB. The release of FB in vitro was more prolonged over 25 days, with close to zero-order pattern by controlling the preparation parameters. We also investigated the physicochemical properties of FB-loaded PLGA MSs by X-ray diffraction and differential scanning calorimeter.

  • PDF