• Title/Summary/Keyword: poly(ethylene oxide)

Search Result 206, Processing Time 0.025 seconds

Effect of High Intensity Ultrasonic Wave on the Degradation Characteristics of PEO (고강도 초음파에 의한 PEO의 분해특성에 관한 연구)

  • 김형수;김미화
    • Polymer(Korea)
    • /
    • v.26 no.3
    • /
    • pp.353-359
    • /
    • 2002
  • High intensity ultrasound has been applied to a series of poly(ethylene oxide) (PEO)/water systems having different molecular weights of PEO. Major interest was focused on the effect of ultrasonic wane on the melt viscosity chemical structure and thermal properties of PEO. The expected role of ultrasound used in this study was to generate macroradicals of PEO chains by the formation and subsequent collapse of bubbles. It was found that the melt viscosity and chemical structure of PEO change significantly depending on the sonication time. For the prolonged sonication, PEO chains were significantly degraded and new end groups were formed by the interplay of various radical species. When the molecular weight of PEO was relatively higher, the crystallization rate was decreased and the intensity of the melting peak was reduced.

Synthesis and Degradation Behaviors of PEO/PL/PEO tri-block Copolymers

  • Lee, Soo-Hong;Kim, Soo-Hyun;Kim, Young-Ha;Han, Yang-Kyoo
    • Macromolecular Research
    • /
    • v.10 no.2
    • /
    • pp.85-90
    • /
    • 2002
  • Poly (ethylene oxide)/polylatide/poly(ethylene oxide) (PEO/PL/PEO) tri-block copolymers, which each block is connected by ester bond, were synthesized by coupling reaction of PL with PEO in the presence of pyridine. PL/PEO/PL tri-block copolymer was synthesized by ring opening polymerization of L-lactide initiated by PEO in the presence of stannous octoate. Degradation behavior of the copolymers was investigated in a pH 7.4 phosphate buffer saline (PBS) at 37$\pm$1 $^{\circ}C$. Gel permeation chromatography (GPC) and $^1$H-nuclear magnetic resonance (NMR) were used to monitor the change of mass loss, molecular weight and composition of copolymers. In hydrolytic degradation, the PEO/PL/PEO tri-block copolymer with high PEO contents affected the increase of its mass loss, and resulted in the decrease of its molecular weight as well as PEO composition. However, when PL/PEO/PL and PEO/PL/PEO tri-block copolymers had similar PEO contents, PEO/PL/PEO decreased faster in molecular weight and PEO composition than PL/PEO/PL.

Release of Nifedipine from Poly(ethylene oxide) Tablets (폴리에칠렌 옥사이드 정제로부터 니페디핀의 방출양상)

  • Hong, Sung-In;Hur, Young-Lim;Oh, Seaung-Youl
    • Journal of Pharmaceutical Investigation
    • /
    • v.30 no.3
    • /
    • pp.207-211
    • /
    • 2000
  • The objective of this work is to investigate the effect of molecular weight of poly(ethylene oxide) (PEO) and release medium on the release of nifedipine (NP) from PEO tablets containing NP and to get some mechanistic insights into the release of NP. The tablets containing NP were prepared by direct compression, using a flat-faced punch and die. The molecular weights of PEOs used were 200K, 900K, 2000K and 7,000K. The release kinetics were studied for 24 hours in aqueous ethanol solution, using a dissolution tester at $36.5^{\circ}C$ and 100 rpm. Drug release rate increased, as the concentration of ethanol in the dissolution medium increased, due to the increased solubility of NP. As the molecular weight of PEO increased, release rate decreased, due to the slower swelling and dissolution of PEO. The power values obtained by fitting data to the power law expression $(M_t/M_{\infty}=kt^n)$ indicated that, at low ethanol concentration, the release of NP is governed by anomalous diffusion. However, as the ethanol concentration increases, diffusional release becomes to prevail over anomalous or zero-order release. Overall, these results provided some insights into the release of NP from PEO tablet.

  • PDF

Preparation and Characterization of pH-Sensitive Poly(ethylene oxide) Grafted Methacrylic Acid and Acrylic Acid Hydrogels by ${\gamma}-ray $ Irradiation

  • Lim, Youn-Mook;Lee, Young-Moo;Nho, Young-Chang
    • Macromolecular Research
    • /
    • v.13 no.4
    • /
    • pp.327-333
    • /
    • 2005
  • pH-sensitive hydrogels were studied as a drug carrier for the protection of insulin from the acidic environment of the stomach before releasing it in the small intestine. In this study, hydrogels based on poly(ethylene oxide) (PEO) networks grafted with methacrylic acid (MAA) or acrylic acid (AAc) were prepared via a two-step process. PEO hydrogels were prepared by ${\gamma}-ray $ irradiation (radiation dose: 50 kGy, dose rate: 7.66 kGy/h), grafted by either MAA or AAc monomers onto the PEO hydrogels and finally underwent irradiation (radiation dose: 520 kGy, dose rate: 2.15 kGy/h). These grafted hydrogels showed a pH-sensitive swelling behavior. The grafted hydrogels were used as a carrier for the drug delivery systems for the controlled release of insulin. Drug-loaded hydrogels were placed in simulated gastric fluid (SGF, pH 1.2) for 2 hr and then in simulated intestinal fluid (SIF, pH 6.8). The in vitro drug release behaviors of these hydrogels were examined by quantification analysis with a UV-Vis spectrophotometer.

Preparation and Characterization of Biodegradable Poly($\varepsilon$-caprolactone)/ Poly(ethylene oxide) Microcapsules Containing Erythromycin (에리트로마이신을 함유한 생분해성 폴리카프로락톤/폴리(에틸렌 옥사이드) 마이크로캡슐의 제조 및 특성)

  • 박수진;김승학;이재락;이해방;홍성권
    • Polymer(Korea)
    • /
    • v.27 no.5
    • /
    • pp.449-457
    • /
    • 2003
  • The purposes of this work were the producing of a biodegradable poly($\varepsilon$-caprolactone) (PCL) / poly(ethylene oxide) (PEO) microcapsule and the analyzing of form and features for the manufacturing conditions which could be observed in a prospective drug delivery systems through drug release. The effects of emulsifier, emulsifier concentration, and stirring rate for the diameter and form of the microcapsules were observed using image analyzer and scanning electron microscope. The role of interfacial adhesion between PCL/PEO and drug was determined by contact angle measurements, and the drug release test of the microcapsules was characterized by UV/vis. spectra. As a result, the microcapsules were made in spherical fonns with a mean particle size of 170 nm∼68 $\mu$m. And the work of adhesion between water and PCL/PEO increased with increasing the content of PEO, probably due to the increased the hydrophilicity. It was also found that the drug release rate from the microcapsules significantly increased with increasing the content of PEO, which could be also attributed to the increasing of the hydrophilic groups or the degree of adhesion force at interfaces.

Multiform Oxide Optical Materials via the Versatile Pechini-type Sol-Gel Process

  • Lin, J.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1247-1250
    • /
    • 2008
  • This presentation highlights work from the authors' laboratories on the various kinds of oxide optical materials, mainly luminescence and pigment materials with different forms (powder, core-shell structures, thin film and patterning) prepared by the Pechini-type sol-gel (PSG) process. The PSG process which uses the common metal salts (nitrates, acetates, chlorides etc) as precursors and citric acid (CA) as chelating ligands of metal ions and polyhydroxy alcohol (such as ethylene glycol or poly ethylene glycol) as cross-linking agent to form a polymeric resin on molecular level, allowing the preparation of many forms of luminescent materials.

  • PDF

The Effects of Plasticizer Addition on the Conductivity of Polymer Electrolyte Based on Poly(ethylene oxide) (이온전도성 Poly(ethylene oxide) 고분자 전해질의 전도도에 미치는 가소제 첨가 효과)

  • 문성인;진봉수;김종욱;윤문수;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.11a
    • /
    • pp.82-85
    • /
    • 1994
  • The purpose of this study is to research and develop solid polymer electrolyte(SPE) for Li secondary battery. This paper describes effects of plasticizer addition and temperature dependence of conductivity of these PEO electrolytes. Adding propylene carbonate and ethylene carbonate to PEO-LiClO$_4$electrolyte, its conductivity was higher than PEO-LiClO$_4$ itself. Steady state current method and AC impedance used for the determination of transference number in PEO electrolyte film. The transference number of PEO$\_$8/LiClO$_4$PC$\_$5/EC$\_$5/ polymer electrolyte film is 0.45 at 60$^{\circ}C$.

Synthesis of Polystyrene-b-Poly(ethylene oxide)-b-Polylactide Copolymers via Sequential Anionic and Ring-Opening Polymerizations (순차적 음이온 및 개환중합반응을 통한 폴리스티렌-폴리에틸렌옥사이드-폴리락티드 블록공증합체의 합성)

  • Song, Jie;Cho, Byoung-Ki
    • Polymer(Korea)
    • /
    • v.33 no.5
    • /
    • pp.458-462
    • /
    • 2009
  • We have synthesized ABC linear triblock copolymers, i.e., polystyrene-b-poly(ethylene oxide)-b-polylactide, via sequential anionic and ring-opening polymerizations. In the first anionic polymerization step, styrene was polymerized in cyclohexane using sec-butyllithium as the initiator. Poly (styryl) lithium was hydroxylated by the addition of ethylene oxide, and the subsequent protonation with methanolic HCl. In the second anionic polymerization step, potassium naphthalenide was used to deprotonate the hydroxyl group of the PS to generate the macroinitiator of PS-$O^-K^+$. Polymerization of ethylene oxide was performed in THF and terminated with methanolic HCl. In the ring-opening polymerization step, the PS-b-PEO-$AlEt_2$ macroinitiator was prepared from an $AlEt_3$/pyridine system in THF, and the polymerization of lactide was performed at $90^{\circ}C$. The resulting block copolymers showed well-defined molecular weights and narrow molecular weight distributions as revealed by $^1H$- NMR spectroscopy and gel permeation chromatography (GPC).

Preparation and Electrochemical Properties of Polymeric Composite Electrolytes Containing Organic Clay Materials (Organic Clay가 첨가된 고분자 복합 전해질의 제조 및 전기화학적 성질)

  • Kim, Seok;Hwang, Eun-Ju;Lee, Jea-Rock;Kim, Hyung-Il;Park, Soo-Jin
    • Polymer(Korea)
    • /
    • v.31 no.4
    • /
    • pp.297-301
    • /
    • 2007
  • In this work, polymer/(layered silicate) nanocomposites (PLSN) based on poly (ethylene oxide) (PEO), ethylene carbonate (EC) as a plasticizer, lithium salt ($LiClO_4$), and sodium montmorillonite ($Na^+-MMT$) or organic montmorillonite (organic MMT) clay were fabricated. And the effects of organic MMT on the polymer matrix were investigated as a function of ionic conductivity. For the application to electrolytes an Li batteries, polymer electrolytes containing the organic nanoclays were used in this work. As a result, the spacing between layers and hydrophobicity of the organic nanoclays were increased, affecting on the exfoliation behaviors of the MMT layers in clay/PEO nanocomposites. From ion-conductivity results, the organic-MMT showed higher values than those of $Na^+-MMT$, and the MMT-20A sample that was treated by methyl dihydrogenated tallow ammonium, showed the highest conductivity in this system.

Indium Tin Oxide-Free Large-Area Flexible Organic Light-Emitting Diodes Utilizing Highly Conductive poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) Anode Fabricated by the Knife Coating Method (나이프 코팅 법으로 제작한 ITO-Free 고전도성 PEDOT:PSS 양극 대면적 유연 OLED 소자 제작에 관한 연구)

  • Seok, JaeYoung;Lee, Jaehak;Yang, MinYang
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.1
    • /
    • pp.49-55
    • /
    • 2015
  • This paper reports solution-processed, high-efficiency organic light-emitting diodes (OLEDs) fabricated by a knife coating method under ambient air conditions. In addition, indium tin oxide (ITO), traditionally used as the anode, was substituted by optimizing the conductivity enhancement treatment of poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) films on a polyethylene terephthalate (PET) substrate. The transmittance and sheet resistance of the optimized PEDOT:PSS anode were 83.4% and $27.8{\Omega}/sq$., respectively. The root mean square surface roughness of the PEDOT:PSS anode, measured by atomic force microscopy, was only 2.95 nm. The optimized OLED device showed a maximum current efficiency and maximum luminous density of 5.44 cd/A and $8,356cd/m^2$, respectively. As a result, the OLEDs created using the PEDOT:PSS anode possessed highly comparable characteristics to those created using ITO anodes.