Preparation and Characterization of pH-Sensitive Poly(ethylene oxide) Grafted Methacrylic Acid and Acrylic Acid Hydrogels by ${\gamma}-ray $ Irradiation

  • Lim, Youn-Mook (School of Chemical Engineering, Collage of Engineering, Hanyang University) ;
  • Lee, Young-Moo (School of Chemical Engineering, Collage of Engineering, Hanyang University) ;
  • Nho, Young-Chang (Radiation Application Research Division, Korea Atomic Energy Research Institute)
  • Published : 2005.08.31

Abstract

pH-sensitive hydrogels were studied as a drug carrier for the protection of insulin from the acidic environment of the stomach before releasing it in the small intestine. In this study, hydrogels based on poly(ethylene oxide) (PEO) networks grafted with methacrylic acid (MAA) or acrylic acid (AAc) were prepared via a two-step process. PEO hydrogels were prepared by ${\gamma}-ray $ irradiation (radiation dose: 50 kGy, dose rate: 7.66 kGy/h), grafted by either MAA or AAc monomers onto the PEO hydrogels and finally underwent irradiation (radiation dose: 520 kGy, dose rate: 2.15 kGy/h). These grafted hydrogels showed a pH-sensitive swelling behavior. The grafted hydrogels were used as a carrier for the drug delivery systems for the controlled release of insulin. Drug-loaded hydrogels were placed in simulated gastric fluid (SGF, pH 1.2) for 2 hr and then in simulated intestinal fluid (SIF, pH 6.8). The in vitro drug release behaviors of these hydrogels were examined by quantification analysis with a UV-Vis spectrophotometer.

Keywords

References

  1. E. J. Mack, T. Okano, S. W. Kim, and N. A. Peppas, Hydrogels in Medicine and Pharmacy Polymers, CRC Press, Boca Raton, USA, 1988, Vol. II, p. 65
  2. J. M. Rosiak and P. Ulanski, Radiat. Phys. Chem., 55, 139 (1999) https://doi.org/10.1016/S0969-806X(98)00319-3
  3. Y. Qiu and K. N. Park, Adv. Drug Delivery Reviews, 53, 321(2001) https://doi.org/10.1016/S0169-409X(01)00236-8
  4. N. A. Peppas, P. Bures, W. Leobandung, and H. Ichikawa, Eur. J. Pharm. Biopharm., 50, 27 (2000) https://doi.org/10.1016/S0939-6411(00)00090-4
  5. L. Brannon and N. A. Peppas, Chem. Eng. Sci., 46, 715 (1991) https://doi.org/10.1016/0009-2509(91)80177-Z
  6. A. B. Scranton, B. Rangarajan, and J. Klier, Adv. Polym. Sci., 120, 1 (1995)
  7. R. Skouri, F. Schoesseler, J. P. Munch, and S. J. Candau, Macromolecules, 28, 197 (1995) https://doi.org/10.1021/ma00105a026
  8. E. Yu, A. Kramarenko, and A. R. Khoklov, Macromolecules, 30, 3383 (1997) https://doi.org/10.1021/ma961126c
  9. A. R. Khare and N. A. Peppas, Biomaterials, 16, 559 (1995) https://doi.org/10.1016/0142-9612(95)91130-Q
  10. C. Donini, D. N. Robinson, P. Colombo, F. Giordano, and N. A. Peppas, Int. J. Pharm., 245, 83 (2002) https://doi.org/10.1016/S0378-5173(02)00335-6
  11. H. C. Chiu, Y. F. Lin, and Y. H. Hsu, Biomaterials, 23, 1103 (2002) https://doi.org/10.1016/S0142-9612(01)00222-8
  12. O. E. Philippova, D. Hourdet, R. Audebert, and A. R. Khokghlov, Macromolecules, 29, 2822 (1996) https://doi.org/10.1021/ma951006p
  13. G. Staikos, G. Bokias, and K. Karayanni, Polym. Int., 41, 345 (1996) https://doi.org/10.1002/(SICI)1097-0126(199611)41:3<345::AID-PI626>3.0.CO;2-4
  14. P. M. Torre and S. Torrado, Biomaterials, 24, 1459 (2003) https://doi.org/10.1016/S0142-9612(02)00221-1
  15. J. W. Lee, S. Y. Kim, S. S. Kim, Y. M. Lee, K. H. Lee, and S. J. Kim, J. Appl. Polym. Sci., 73, 113 (1999) https://doi.org/10.1002/(SICI)1097-4628(19990705)73:1<113::AID-APP13>3.0.CO;2-D
  16. A. Bhattacharya, Prog. Polym. Sci., 25, 371 (2000) https://doi.org/10.1016/S0079-6700(00)00009-5
  17. E. Jabbari and S. Nozari, Eur. Polym. J., 36, 685 (2000) https://doi.org/10.1016/S0014-3057(99)00128-7
  18. J. M. Rosiak and P. Ulanski, Radiat. Phys. Chem., 55, 139 (1999) https://doi.org/10.1016/S0969-806X(98)00319-3
  19. P. Markland, Y. Zhang, G. L. Amidon, and V. C. Yang, J. Biomed. Mat. Res., 47, 595 (1999) https://doi.org/10.1002/(SICI)1097-4636(19991215)47:4<595::AID-JBM17>3.0.CO;2-I
  20. W. Leobandung, H. Ichikawa, Y. Fukumori, and N. A. Peppas, J. Control. Release, 80, 357 (2002) https://doi.org/10.1016/S0168-3659(02)00028-7
  21. T. Traitel, Y. Cohen, and J. Kost, Biomaterials, 21, 1679 (2001) https://doi.org/10.1016/S0142-9612(00)00050-8
  22. M. K. Chun, C. S. Cho, and H. K. Choi, J. Control. Release, 81, 327 (2002) https://doi.org/10.1016/S0168-3659(02)00078-0
  23. F. A. Dorkoosh, J. C. Verhoef, M. H. C. Ambagts, M. Rafiee- Tehrani, G. Borchard, and H. E. Junginger, Eur. J. Pharm. Sci., 15, 433 (2002) https://doi.org/10.1016/S0928-0987(02)00028-3
  24. V. S. Bhalerao, S. Varghese, A. K. Lele, and M. V. Badiger, Polymer, 39, 2255 (1998) https://doi.org/10.1016/S0032-3861(97)00502-8
  25. P. Ferloni, A. Magistris, G. Choidelli, A. Faucitano, and A. Buttafava, Radiat. Phys. Chem., 37, 615 (1991)
  26. Y. C. Nho and J. H. Jin, J. Appl. Plym. Sci., 63, 1101 (1997) https://doi.org/10.1002/(SICI)1097-4628(19970228)63:9<1101::AID-APP1>3.0.CO;2-L