• 제목/요약/키워드: poly(ADP-ribose) polymerase (PARP)

검색결과 268건 처리시간 0.024초

PARP-1 억제제의 Docking 및 QSAR 연구 (Docking and QSAR studies of PARP-1 Inhibitors)

  • Kim, Hye-Jung;Cho, Seung-Joo
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2004년도 The 3rd Annual Conference for The Korean Society for Bioinformatics Association of Asian Societies for Bioinformatics 2004 Symposium
    • /
    • pp.210-218
    • /
    • 2004
  • Poly(ADP-ribose)polymerase-1 (PARP-1) is a nuclear enzyme involved in various physical functions related to genomic repair, and PARP inhibitors have therapeutic application in a variety of neurological diseases. Docking and the QSAR (quantitative structure-activity relationships) studies for 52 PARP-1 inhibitors were conducted using FlexX algorithm, comparative molecular field analysis (CoMFA), and hologram quantitative structure-activity relationship analysis (HQSAR). The resultant FlexX model showed a reasonable correlation (r$^{2}$ = 0.701) between predicted activity and observed activity. Partial least squares analysis produced statistically significant models with q$^{2}$ values of 0.795 (SDEP=0.690, r$^{2}$=0.940, s=0.367) and 0.796 (SDEP=0.678, r$^{2}$ = 0.919, s=0.427) for CoMFA and HQSAR, respectively. The models for the entire inhibitor set were validated by prediction test and scrambling in both QSAR methods. In this work, combination of docking, CoMFA with 3D descriptors and HQSAR based on molecular fragments provided an improved understanding in the interaction between the inhibitors and the PARP. This can be utilized for virtual screening to design novel PARP-1 inhibitors.

  • PDF

Effects of NEES on PARP Expression in the Corpus Striatum in Rats Induced with Transient Global Ischemia

  • Lee, Jung Sook;Song, Young Wha;Kim, Sung Won
    • 국제물리치료학회지
    • /
    • 제3권2호
    • /
    • pp.429-434
    • /
    • 2012
  • Ischemia, the leading cause of strokes, is known to be deeply related to synaptic plasticity and apoptosis in tissue damage due to ischemic conditions or trauma. The purpose of this study was to research the effects of NEES(needle electrode electrical stimulation) in brain cells of ischemia-induced rat, more specifically the effects of Poly[ADP-ribose] polymerase(PARP) on the corpus striatum. Ischemia was induced in SD mice by occluding the common carotid artery for 5 minutes, after which blood was re-perfused. NEES was applied to acupuncture points, at 12, 24, and 48 hours post-ischemia on the joksamri, and at 24 hours post-ischemia on the hapgok. Protein expression was investigated through PARP antibody immuno-reactive cells in the cerebral nerve cells and western blotting. The number of PARP reactive cells in the corpus striatum 24 hours post-ischemia was significantly(p<.05) smaller in the NEES group compared to the global ischemia(GI) group. PARP expression 24 hours post-ischemia was very significantly smaller in the NEES group compared to the GI group. Results show that ischemia increases PARP expression and stimulates necrosis, making it a leading cause of death of nerve cells. NEES can decrease protein expression related to cell death, protecting neurons and preventing neuronal apoptosis.

HL-60 세포에서 Diallyl Disulfide의 Daunorubicin 유발 Apoptosis 항진효과 (Diallyl Disulfide Enhances Daunorubicin-Induced Apoptosis of HL-60 Cells)

  • 구본선;양정예;손희숙;권강범;지은정
    • Journal of Nutrition and Health
    • /
    • 제36권8호
    • /
    • pp.828-833
    • /
    • 2003
  • Dially disulfide (DADS), a component of garlic (Allium sativum), has been known to exert potent chemopreventive activity against various cancers. In this study, the synergistic effect of DADS and daunorubicin on the cytotoxicity of HL-60 cells, a human leukemia cell line, was investigated. DADS at 25 M greatly potentiated daunorubicin-induced cell death, decreasing cell viabilityto50%ofthe control. Daunorubicin-induced apoptosis was accompanied by the activation of caspase-3, the degradation of poly-(ADP-ribose) polymerase (PARP) and D4-GDI, and DNA fragmentation, which were blocked by pre-treatment with acetyl-Asp-Glu-Val-Asp- dialdehyde (Ac-DEVD-CHO). Treatment that combined 25 M DADS and 100 nM daunorubicin caused a similar degree of caspase-3 activation, PARP and D4-GDI degradation, and DNA fragmentation to that caused by treatment with 250 nM daunorubicin alone. These results indicate that combined therapy using daunorubicin with DADS, a component of food, and garlic can effectively decrease the therapeutic dose of daunorubicin, preventing the severe side effects of daunorubicin.

반묘 BuOH층의 U937 세포주에 대한 apoptosis유도 효과 (Effect of Butanol Fraction of Mylabris phalerata on Induction of Apoptosis in U937 cells)

  • 허정은;윤택준;이종수;정진홍;김성훈
    • 약학회지
    • /
    • 제45권5호
    • /
    • pp.484-490
    • /
    • 2001
  • Mylabris phalerata(MP) is an insect that has been used for the treatment of cancer in oriental medicine. To evaluate the anticancer activity of Mylabris phalerata, We measured the cytotoxicity of Mylabris phalerata solvent fractions such as MC, EA, BuOH and residual layers on U937, human monocytic leukemia cells. Of those fractions BuOH layer of Mylabris phalerata was the most effective with ID$_{50}$ of 140$\mu\textrm{g}$/ml. It effectively caused DNA fragmentation from the concentration of 50$\mu\textrm{g}$/ml, showed apoptotic nucleus by tenets assay and expressed apototic portion stained by Annexin-V. It also induced the activation of caspase-3 and cleavage of the substrate poly (ADP-ribose) polymerase (PARP). These results suggest BuOH layer of Mylabris phalerata exerts anticancer activity by induction of apoptosis via activation of caspase-3 protease.e.

  • PDF

The Role and Regulation of MCL-1 Proteins in Apoptosis Pathway

  • Bae, Jeehyeon
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2002년도 창립10주년기념 및 국립독성연구원 의약품동등성평가부서 신설기념 국재학술대회:생물학적 동등성과 의약품 개발 전략을 위한 국제심포지움
    • /
    • pp.113-113
    • /
    • 2002
  • Phylogenetically conserved Bcl-2 family proteins play a pivotal role in the regulation of apoptosis from virus to human. Members of the Bcl-2 family consist of antiapoptotic proteins such as Bcl-2, Bcl-xL, and Bcl-w, and proapoptotic proteins such as BAD, Bax, BOD, and Bok. It has been proposed that anti- and proapoptotic Bcl-2 proteins regulate cell death by binding to each other and forming heterodimers. A delicate balance between anti- and proapoptotic Bcl-2 family members exists in each cell and the relative concentration of these two groups of proteins determines whether the cell survives or undergoes apoptosis. Mcl-1 (Myeloid cell :leukemia-1) is a member of the Bcl-2 family proteins and was originally cloned as a differentiation-induced early gene that was activated in the human myeloblastic leukemia cell line, ML-1 . Mcl-1 is expressed in a wide variety of tissues and cells including neoplastic ones. We recently identified a short splicing variant of Mcl-1 short (Mcl-IS) and designated the known Mcl-1 as Mcl-1 long (Mcl-lL). Mcl-lL protein exhibits antiapoptotic activity and possesses the BH (Bcl-2 homology) 1, BH2, BH3, and transmembrane (TM) domains found in related Bcl-2 proteins. In contrast, Mcl-1 S is a BH3 domain-only proapoptotic protein that heterodimerizes with Mcl-lL. Although both Mc1-lL and Mcl-lS proteins contain BH domains fecund in other Bcl-2 family proteins, they are distinguished by their unusually long N-terminal sequences containing PEST (proline, glutamic acid, serine, and threonine) motifs, four pairs of arginine residues, and alanine- and glycine-rich regions. In addition, the expression pattern of Mcl-1 protein is different from that of Bcl-2 suggesting a unique role (or Mcl-1 in apoptosis regulation. Tankyrasel (TRF1-interacting, ankyrin-related ADP-related polymerasel) was originally isolated based on its binding to TRF 1 (telomeric repeat binding factor-1) and contains the sterile alpha motif (SAM) module, 24 ankyrin (ANK) repeats, and the catalytic domain of poly(adenosine diphosphate-ribose) polymerase (PARP). Previous studies showed that tankyrasel promotes telomere elongation in human cells presumably by inhibiting TRFI though its poly(ADP-ribosyl)action by tankyrasel . In addition, tankyrasel poly(ADP-ribosyl)ates Insulin-responsive amino peptidase (IRAP), a resident protein of GLUT4 vesicles, and insulin stimulates the PARP activity of tankyrase1 through its phosphorylation by mitogen-activated protein kinase (MAPK). ADP-ribosylation is a posttranslational modification that usually results in a loss of protein activity presumably by enhancing protein turnover. However, little information is available regarding the physiological function(s) of tankyrase1 other than as a PARP enzyme. In the present study, we found tankyrasel as a specific-binding protein of Mcl-1 Overexpression of tankyrasel led to the inhibition of both the apoptotic activity of Mel-lS and the survival action of Mcl-lL in mammalian cells. Unlike other known tankyrasel-interacting proteins, tankyrasel did not poly(ADP-ribosyl)ate either of the Mcl-1 proteins despite its ability to decrease Mcl-1 proteins expression following coexpression. Therefore, this study provides a novel mechanism to regulate Mcl-1-modulated apoptosis in which tankyrasel downregulates the expression of Mcl-1 proteins without the involvement of its ADP-ribosylation activity.

  • PDF

Apoptotic Effects of 6-Gingerol in Human Breast Cancer Cells

  • Kim, Hyun-Woo;Oh, Deuk-Hee;Koh, Jeong-Tae;Lim, Young-Chai
    • International Journal of Oral Biology
    • /
    • 제40권4호
    • /
    • pp.223-228
    • /
    • 2015
  • 6-Gingerol exerts anti-tumor effects in various cancer cell models. We evaluated the effect of 6-gingerol on the growth of MCF-7 breast cancer cells and MCF-10A breast epithelial cells to determine whether any growth-inhibitory effects found were attributable to apoptosis, and to elucidate the underlying mechanism of action. 6-Gingerol inhibited the viability of both cell lines in a dose- and time-dependent manner; however, the degree of inhibition was greater in MCF-7 than MCF-10A cells. By flow cytometry, induction of dose- and time-dependent apoptosis was found, and the magnitude of apoptosis was also markedly greater in MCF-7 than MCF-10A cells. Expression of caspase-3 and poly (ADP-ribose) polymerase (PARP) was observed in MCF-7 cells treated with 6-gingerol, and further cleavage of PARP occurred in these cells. We suggest that 6-gingerol induces apoptosis in human breast cancer cells mainly by promoting caspase-3 expression and subsequent degradation of PARP.

넓패 추출물이 HeLa 자궁암세포의 세포사멸에 미치는 영향 (Ishige sinicola Extracts Induce Apoptosis via Activation of a Caspase Cascade in Human HeLa Cells)

  • 조병옥;류형원;소양강;진창현;변명우;김왕근;정일윤
    • 한국식품영양과학회지
    • /
    • 제41권7호
    • /
    • pp.901-906
    • /
    • 2012
  • 본 연구에서는 넓패 메탄올 추출물의 농도별 처리가 인체 자궁암 세포 HeLa의 세포사멸에 미치는 영향을 확인하기 위하여 세포독성 측정, Hoechst 33258 staining, flow cytometry 분석을 통하여 세포사멸을 확인하였다. 넓패 메탄올 추출물 처리 시 HeLa 세포에서 농도 의존적으로 세포의 증식을 억제하였으며, 또한 넓패 메탄올 추출물은 농도 의존적으로 핵을 응축하고 apoptotic bodies을 생성하였다. 유세포 분석을 통하여 apoptosis를 측정한 결과, 넓패 메탄올 추출물의 농도가 증가함에 따라 유의적으로 apoptotic 세포가 증가하였다. Western blot을 통해 PARP 단백질의 절단 현상을 분석한 결과, 넓패 메탄올 추출물의 처리 농도와 시간에 따라 PARP 단백질의 절단 현상이 증가하였다. 또한 넓패 메탄올 추출물은 caspase-8, caspase-9 및 caspase-3 활성을 농도와 시간에 따라 증가시켰으며, caspase 저해제인 z-VAD-fmk로 처리 시 넓패 메탄올 추출물에 의한 세포사멸이 유의적으로 감소되어 넓패 메탄올 추출물에 의한 HeLa 세포의 apoptosis 유도에 caspase가 중요한 역할을 하고 있음을 확인하였다. 따라서 넓패 메탄올 추출물은 HeLa 자궁암 세포의 apoptosis를 유도하는 것으로 나타나 넓패의 항암효과 가능성을 제시하였다.

DNA topoisomerase I 억제제 β-lapachone에 의한 전립선 암세포의 성장억제 기전연구 (Up-regulation of Bax is associated with DNA topoisomerase I inhibitor β-lapachone-induced apoptosis in human prostate carcinoma cells)

  • 공규리;최병태;최영현
    • 생명과학회지
    • /
    • 제12권4호
    • /
    • pp.469-476
    • /
    • 2002
  • 남미지역에 서식하는 Tabebuia avellanedae의 수피에서 동정된 천연 quinone계 물질인 $\beta$-lapachone은 DNA topoisomerase I 억제제 이외 다양한 약리학적 기능이 있을 것으로 추정되지만 그 기능이 명확하지 않다. $\beta$-lapachone의 생리활성 기전 해석의 일환으로 본 연구에서는 인체 전립선 DU-145 암세포주의 성장에 미치는 $\beta$-lapachone의 영향을 조사하였다. p-lapachone이 함유된 배지에서 자란 암세포들은 $\beta$-lapachone 처리 농도 의존적으로 성장이 억제되었으며, 이는 apoptosis가 유발된 세포에서 특징적으로 관찰되는 chromatin condensation 및 DNA fragmentation 현상을 유발하였고, DNA flow cytometry 분석결과 apoptotic-sub Gl기에 해당하는 세포들의 빈도도 증가되었다. 또한 poly (ADP-ribose) polymerase 및 $\beta$-catenin 단백질의 발현에서도 apoptosis 유발 특이적인 분해 현상을 보여주었으며, DU-145 전립선 암세포에서 $\beta$-lapachone에 의한 이러한 apoptosis의 유발에는 Bax의 발현증가에 따른 Bcl-2 발현의 감소가 중요한 역할을 할 고 있는 것으로 사료된다.

PARP1 Impedes SIRT1-Mediated Autophagy during Degeneration of the Retinal Pigment Epithelium under Oxidative Stress

  • Jang, Ki-Hong;Hwang, Yeseong;Kim, Eunhee
    • Molecules and Cells
    • /
    • 제43권7호
    • /
    • pp.632-644
    • /
    • 2020
  • The molecular mechanism underlying autophagy impairment in the retinal pigment epithelium (RPE) in dry age-related macular degeneration (AMD) is not yet clear. Based on the causative role of poly(ADP-ribose) polymerase 1 (PARP1) in RPE necrosis, this study examined whether PARP1 is involved in the autophagy impairment observed during dry AMD pathogenesis. We found that autophagy was downregulated following H2O2-induced PARP1 activation in ARPE-19 cells and olaparib, PARP1 inhibitor, preserved the autophagy process upon H2O2 exposure in ARPE-19 cells. These findings imply that PARP1 participates in the autophagy impairment upon oxidative stress in ARPE-19 cells. Furthermore, PARP1 inhibited autolysosome formation but did not affect autophagosome formation in H2O2-exposed ARPE-19 cells, demonstrating that PARP1 is responsible for impairment of late-stage autophagy in particular. Because PARP1 consumes NAD+ while exerting its catalytic activity, we investigated whether PARP1 impedes autophagy mediated by sirtuin1 (SIRT1), which uses NAD+ as its cofactor. A NAD+ precursor restored autophagy and protected mitochondria in ARPE-19 cells by preserving SIRT1 activity upon H2O2. Moreover, olaparib failed to restore autophagy in SIRT1-depleted ARPE-19 cells, indicating that PARP1 inhibits autophagy through SIRT1 inhibition. Next, we further examined whether PARP1-induced autophagy impairment occurs in the retinas of dry AMD model mice. Histological analyses revealed that olaparib treatment protected mouse retinas against sodium iodate (SI) insult, but not in retinas cotreated with SI and wortmannin, an autophagy inhibitor. Collectively, our data demonstrate that PARP1-dependent inhibition of SIRT1 activity impedes autophagic survival of RPE cells, leading to retinal degeneration during dry AMD pathogenesis.

Neuroprotective Effects of Scopoletin on Neuro-damage caused by Alcohol in Primary Hippocampal Neurons

  • Lee, Jina;Cho, Hyun-Jeong
    • 대한의생명과학회지
    • /
    • 제26권2호
    • /
    • pp.57-65
    • /
    • 2020
  • Excessive drinking of alcohol is known to be one of the main causes of various neurological diseases, such as Alzheimer's disease. Scopoletin is known to have anti-inflammatory and antioxidative properties, and to protect nerve cells. This study examined whether scopoletin inhibits the alcohol-induced apoptosis of primary hippocampal neurons, and how scopoletin regulates several factors associated with the caspase-mediated pathway. To achieve this, the cell viability and apoptosis rate of primary hippocampal neurons were measured by Cell Counting Kit-8 and flow cytometry, respectively. Apoptosis-related protein expressions (Bax, Bid, caspase-3, caspase-9, and Poly (ADP-ribose) polymerase (PARP)) were analyzed by Western blotting, and the ANOVA method was used to confirm the significance of the measured results. As a result, scopoletin inhibited the expressions of alcohol-induced apoptosis and apoptosis-related proteins in primary hippocampal neurons. These results suggest that down-regulation of Bid, Bax, and cleaved caspase-9 expression induced by scopoletin down-regulates the expression of cleaved caspase-3, inhibits the expression of cleaved PARP, and finally, inhibits mitochondrial apoptotic pathways. The study suggests that scopoletin is worth developing as a candidate for neuroprotective agent.