DOI QR코드

DOI QR Code

PARP1 Impedes SIRT1-Mediated Autophagy during Degeneration of the Retinal Pigment Epithelium under Oxidative Stress

  • Jang, Ki-Hong (Department of Biological Sciences, Chungnam National University) ;
  • Hwang, Yeseong (Department of Biological Sciences, Chungnam National University) ;
  • Kim, Eunhee (Department of Biological Sciences, Chungnam National University)
  • Received : 2020.03.25
  • Accepted : 2020.06.05
  • Published : 2020.07.31

Abstract

The molecular mechanism underlying autophagy impairment in the retinal pigment epithelium (RPE) in dry age-related macular degeneration (AMD) is not yet clear. Based on the causative role of poly(ADP-ribose) polymerase 1 (PARP1) in RPE necrosis, this study examined whether PARP1 is involved in the autophagy impairment observed during dry AMD pathogenesis. We found that autophagy was downregulated following H2O2-induced PARP1 activation in ARPE-19 cells and olaparib, PARP1 inhibitor, preserved the autophagy process upon H2O2 exposure in ARPE-19 cells. These findings imply that PARP1 participates in the autophagy impairment upon oxidative stress in ARPE-19 cells. Furthermore, PARP1 inhibited autolysosome formation but did not affect autophagosome formation in H2O2-exposed ARPE-19 cells, demonstrating that PARP1 is responsible for impairment of late-stage autophagy in particular. Because PARP1 consumes NAD+ while exerting its catalytic activity, we investigated whether PARP1 impedes autophagy mediated by sirtuin1 (SIRT1), which uses NAD+ as its cofactor. A NAD+ precursor restored autophagy and protected mitochondria in ARPE-19 cells by preserving SIRT1 activity upon H2O2. Moreover, olaparib failed to restore autophagy in SIRT1-depleted ARPE-19 cells, indicating that PARP1 inhibits autophagy through SIRT1 inhibition. Next, we further examined whether PARP1-induced autophagy impairment occurs in the retinas of dry AMD model mice. Histological analyses revealed that olaparib treatment protected mouse retinas against sodium iodate (SI) insult, but not in retinas cotreated with SI and wortmannin, an autophagy inhibitor. Collectively, our data demonstrate that PARP1-dependent inhibition of SIRT1 activity impedes autophagic survival of RPE cells, leading to retinal degeneration during dry AMD pathogenesis.

Keywords

References

  1. Abd Elmageed, Z.Y., Naura, A.S., Errami, Y., and Zerfaoui, M. (2012). The poly(ADP-ribose) polymerases (PARPs): new roles in intracellular transport. Cell. Signal. 24, 1-8. https://doi.org/10.1016/j.cellsig.2011.07.019
  2. Bai, P., Canto, C., Oudart, H., Brunyanszki, A., Cen, Y., Thomas, C., Yamamoto, H., Huber, A., Kiss, B., Houtkooper, R.H., et al. (2011). PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab. 13, 461-468. https://doi.org/10.1016/j.cmet.2011.03.004
  3. Borra, M.T., Smith, B.C., and Denu, J.M. (2005). Mechanism of human SIRT1 activation by resveratrol. J. Biol. Chem. 280, 17187-17195. https://doi.org/10.1074/jbc.M501250200
  4. Cao, D., Wang, M., Qiu, X., Liu, D., Jiang, H., Yang, N., and Xu, R.M. (2015). Structural basis for allosteric, substrate-dependent stimulation of SIRT1 activity by resveratrol. Genes Dev. 29, 1316-1325. https://doi.org/10.1101/gad.265462.115
  5. Cerutti, R., Pirinen, E., Lamperti, C., Marchet, S., Sauve, A.A., Li, W., Leoni, V., Schon, E.A., Dantzer, F., Auwerx, J., et al. (2014). NAD(+)-dependent activation of Sirt1 corrects the phenotype in a mouse model of mitochondrial disease. Cell Metab. 19, 1042-1049. https://doi.org/10.1016/j.cmet.2014.04.001
  6. Chang, H.C. and Guarente, L. (2014). SIRT1 and other sirtuins in metabolism. Trends Endocrinol. Metab. 25, 138-145. https://doi.org/10.1016/j.tem.2013.12.001
  7. Chen, H., Ji, H., Zhang, M., Liu, Z., Lao, L., Deng, C., Chen, J., and Zhong, G. (2017). An agonist of the protective factor SIRT1 improves functional recovery and promotes neuronal survival by attenuating inflammation after spinal cord injury. J. Neurosci. 37, 2916-2930. https://doi.org/10.1523/JNEUROSCI.3046-16.2017
  8. Cuervo, A.M., Bergamini, E., Brunk, U.T., Droge, W., Ffrench, M., and Terman, A. (2005). Autophagy and aging: the importance of maintaining "clean" cells. Autophagy 1, 131-140. https://doi.org/10.4161/auto.1.3.2017
  9. David, K.K., Andrabi, S.A., Dawson, T.M., and Dawson, V.L. (2009). Parthanatos, a messenger of death. Front. Biosci. (Landmark Ed.) 14, 1116-1128.
  10. Fang, E.F., Scheibye-Knudsen, M., Brace, L.E., Kassahun, H., SenGupta, T., Nilsen, H., Mitchell, J.R., Croteau, D.L., and Bohr, V.A. (2014). Defective mitophagy in XPA via PARP-1 hyperactivation and NAD(+)/SIRT1 reduction. Cell 157, 882-896. https://doi.org/10.1016/j.cell.2014.03.026
  11. Fatokun, A.A., Dawson, V.L., and Dawson, T.M. (2014). Parthanatos: mitochondrial-linked mechanisms and therapeutic opportunities. Br. J. Pharmacol. 171, 2000-2016. https://doi.org/10.1111/bph.12416
  12. Galluzzi, L., Vitale, I., Aaronson, S.A., Abrams, J.M., Adam, D., Agostinis, P., Alnemri, E.S., Altucci, L., Amelio, I., Andrews, D.W., et al. (2018). Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 25, 486-541. https://doi.org/10.1038/s41418-017-0012-4
  13. Gibson, B.A. and Kraus, W.L. (2012). New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nat. Rev. Mol. Cell Biol. 13, 411-424. https://doi.org/10.1038/nrm3376
  14. Golestaneh, N., Chu, Y., Xiao, Y.Y., Stoleru, G.L., and Theos, A.C. (2017). Dysfunctional autophagy in RPE, a contributing factor in age-related macular degeneration. Cell Death Dis. 8, e2537. https://doi.org/10.1038/cddis.2016.453
  15. Govindaraju, V.K., Bodas, M., and Vij, N. (2017). Cigarette smoke induced autophagy-impairment regulates AMD pathogenesis mechanisms in ARPE-19 cells. PLoS One 12, e0182420. https://doi.org/10.1371/journal.pone.0182420
  16. Hariharan, N., Maejima, Y., Nakae, J., Paik, J., Depinho, R.A., and Sadoshima, J. (2010). Deacetylation of FoxO by Sirt1 plays an essential role in mediating starvation-induced autophagy in cardiac myocytes. Circ. Res. 107, 1470-1482. https://doi.org/10.1161/CIRCRESAHA.110.227371
  17. Hu, L., Wang, H., Huang, L., Zhao, Y., and Wang, J. (2016). Crosstalk between autophagy and intracellular radiation response (Review). Int. J. Oncol. 49, 2217-2226. https://doi.org/10.3892/ijo.2016.3719
  18. Huang, R. and Liu, W. (2015). Identifying an essential role of nuclear LC3 for autophagy. Autophagy 11, 852-853. https://doi.org/10.1080/15548627.2015.1038016
  19. Huang, R., Xu, Y., Wan, W., Shou, X., Qian, J., You, Z., Liu, B., Chang, C., Zhou, T., Lippincott-Schwartz, J., et al. (2015). Deacetylation of nuclear LC3 drives autophagy initiation under starvation. Mol. Cell 57, 456-466. https://doi.org/10.1016/j.molcel.2014.12.013
  20. Hyttinen, J.M.T., Blasiak, J., Niittykoski, M., Kinnunen, K., Kauppinen, A., Salminen, A., and Kaarniranta, K. (2017). DNA damage response and autophagy in the degeneration of retinal pigment epithelial cells-Implications for age-related macular degeneration (AMD). Ageing Res. Rev. 36, 64-77. https://doi.org/10.1016/j.arr.2017.03.006
  21. Imai, S., Armstrong, C.M., Kaeberlein, M., and Guarente, L. (2000). Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403, 795-800. https://doi.org/10.1038/35001622
  22. Jang, K.H., Do, Y.J., Son, D., Son, E., Choi, J.S., and Kim, E. (2017). AIFindependent parthanatos in the pathogenesis of dry age-related macular degeneration. Cell Death Dis. 8, e2526. https://doi.org/10.1038/cddis.2016.437
  23. Kaarniranta, K., Sinha, D., Blasiak, J., Kauppinen, A., Vereb, Z., Salminen, A., Boulton, M.E., and Petrovski, G. (2013). Autophagy and heterophagy dysregulation leads to retinal pigment epithelium dysfunction and development of age-related macular degeneration. Autophagy 9, 973-984. https://doi.org/10.4161/auto.24546
  24. Ke, Y., Han, Y., Guo, X., Wen, J., Wang, K., Jiang, X., Tian, X., Ba, X., Boldogh, I., and Zeng, X. (2017). PARP1 promotes gene expression at the posttranscriptiona level by modulating the RNA-binding protein HuR. Nat. Commun. 8, 14632. https://doi.org/10.1038/ncomms14632
  25. Kiffin, R., Bandyopadhyay, U., and Cuervo, A.M. (2006). Oxidative stress and autophagy. Antioxid. Redox Signal. 8, 152-162. https://doi.org/10.1089/ars.2006.8.152
  26. Kitada, M. and Koya, D. (2013). SIRT1 in type 2 diabetes: mechanisms and therapeutic potential. Diabetes Metab. J. 37, 315-325. https://doi.org/10.4093/dmj.2013.37.5.315
  27. Knight, M.I. and Chambers, P.J. (2001). Production, extraction, and purification of human poly(ADP-ribose) polymerase-1 (PARP-1) with high specific activity. Protein Expr. Purif. 23, 453-458. https://doi.org/10.1006/prep.2001.1513
  28. Kurz, T., Karlsson, M., Brunk, U.T., Nilsson, S.E., and Frennesson, C. (2009). ARPE-19 retinal pigment epithelial cells are highly resistant to oxidative stress and exercise strict control over their lysosomal redox-active iron. Autophagy 5, 494-501. https://doi.org/10.4161/auto.5.4.7961
  29. Lee, I.H. (2019). Mechanisms and disease implications of sirtuin-mediated autophagic regulation. Exp. Mol. Med. 51, 1-11.
  30. Lee, I.H., Cao, L., Mostoslavsky, R., Lombard, D.B., Liu, J., Bruns, N.E., Tsokos, M., Alt, F.W., and Finkel, T. (2008). A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc. Natl. Acad. Sci. U. S. A. 105, 3374-3379. https://doi.org/10.1073/pnas.0712145105
  31. Lin, W. and Xu, G. (2019). Autophagy: a role in the apoptosis, survival, inflammation, and development of the retina. Ophthalmic Res. 61, 65-72. https://doi.org/10.1159/000487486
  32. Luna, A., Aladjem, M.I., and Kohn, K.W. (2013). SIRT1/PARP1 crosstalk: connecting DNA damage and metabolism. Genome Integr. 4, 6. https://doi.org/10.1186/2041-9414-4-6
  33. Luo, G., Jian, Z., Zhu, Y., Zhu, Y., Chen, B., Ma, R., Tang, F., and Xiao, Y. (2019). Sirt1 promotes autophagy and inhibits apoptosis to protect cardiomyocytes from hypoxic stress. Int. J. Mol. Med. 43, 2033-2043.
  34. Menzies, F.M., Fleming, A., Caricasole, A., Bento, C.F., Andrews, S.P., Ashkenazi, A., Fullgrabe, J., Jackson, A., Jimenez Sanchez, M., Karabiyik, C., et al. (2017). Autophagy and neurodegeneration: pathogenic mechanisms and therapeutic opportunities. Neuron 93, 1015-1034. https://doi.org/10.1016/j.neuron.2017.01.022
  35. Mitter, S.K., Song, C., Qi, X., Mao, H., Rao, H., Akin, D., Lewin, A., Grant, M., Dunn, W., Jr., Ding, J., et al. (2014). Dysregulated autophagy in the RPE is associated with increased susceptibility to oxidative stress and AMD. Autophagy 10, 1989-2005. https://doi.org/10.4161/auto.36184
  36. Nah, J., Yuan, J., and Jung, Y.K. (2015). Autophagy in neurodegenerative diseases: from mechanism to therapeutic approach. Mol. Cells 38, 381-389. https://doi.org/10.14348/MOLCELLS.2015.0034
  37. Navarro-Yepes, J., Burns, M., Anandhan, A., Khalimonchuk, O., del Razo, L.M., Quintanilla-Vega, B., Pappa, A., Panayiotidis, M.I., and Franco, R. (2014). Oxidative stress, redox signaling, and autophagy: cell death versus survival. Antioxid. Redox Signal. 21, 66-85. https://doi.org/10.1089/ars.2014.5837
  38. Nimmagadda, V.K., Bever, C.T., Vattikunta, N.R., Talat, S., Ahmad, V., Nagalla, N.K., Trisler, D., Judge, S.I., Royal, W., 3rd, Chandrasekaran, K., et al. (2013). Overexpression of SIRT1 protein in neurons protects against experimental autoimmune encephalomyelitis through activation of multiple SIRT1 targets. J. Immunol. 190, 4595-4607. https://doi.org/10.4049/jimmunol.1202584
  39. Ohsumi, Y. (2001). Molecular dissection of autophagy: two ubiquitin-like systems. Nat. Rev. Mol. Cell Biol. 2, 211-216. https://doi.org/10.1038/35056522
  40. Rajamohan, S.B., Pillai, V.B., Gupta, M., Sundaresan, N.R., Birukov, K.G., Samant, S., Hottiger, M.O., and Gupta, M.P. (2009). SIRT1 promotes cell survival under stress by deacetylation-dependent deactivation of poly(ADP-ribose) polymerase 1. Mol. Cell. Biol. 29, 4116-4129. https://doi.org/10.1128/MCB.00121-09
  41. Rodriguez-Vargas, J.M., Oliver-Pozo, F.J., and Dantzer, F. (2019). PARP1 and poly(ADP-ribosyl)ation signaling during autophagy in response to nutrient deprivation. Oxid. Med. Cell. Longev. 2019, 2641712.
  42. Rodriguez-Vargas, J.M., Rodriguez, M.I., Majuelos-Melguizo, J., Garcia-Diaz, A., Gonzalez-Flores, A., Lopez-Rivas, A., Virag, L., Illuzzi, G., Schreiber, V., Dantzer, F., et al. (2016). Autophagy requires poly(adp-ribosyl)ationdependent AMPK nuclear export. Cell Death Differ. 23, 2007-2018. https://doi.org/10.1038/cdd.2016.80
  43. Rubinsztein, D.C., Marino, G., and Kroemer, G. (2011). Autophagy and aging. Cell 146, 682-695. https://doi.org/10.1016/j.cell.2011.07.030
  44. Ryter, S.W., Cloonan, S.M., and Choi, A.M. (2013). Autophagy: a critical regulator of cellular metabolism and homeostasis. Mol. Cells 36, 7-16. https://doi.org/10.1007/s10059-013-0140-8
  45. Salminen, A. and Kaarniranta, K. (2009). SIRT1: regulation of longevity via autophagy. Cell. Signal. 21, 1356-1360. https://doi.org/10.1016/j.cellsig.2009.02.014
  46. Smith, B.C., Hallows, W.C., and Denu, J.M. (2009). A continuous microplate assay for sirtuins and nicotinamide-producing enzymes. Anal. Biochem. 394, 101-109. https://doi.org/10.1016/j.ab.2009.07.019
  47. Wang, C., Xu, W., Zhang, Y., Zhang, F., and Huang, K. (2018). PARP1 promote autophagy in cardiomyocytes via modulating FoxO3a transcription. Cell Death Dis. 9, 1047. https://doi.org/10.1038/s41419-018-1108-6
  48. Wang, Y., Kim, N.S., Haince, J.F., Kang, H.C., David, K.K., Andrabi, S.A., Poirier, G.G., Dawson, V.L., and Dawson, T.M. (2011). Poly(ADP-ribose) (PAR) binding to apoptosis-inducing factor is critical for PAR polymerase-1-dependent cell death (parthanatos). Sci. Signal. 4, ra20. https://doi.org/10.1126/scisignal.2000902
  49. Wei, H., Xun, Z., Granado, H., Wu, A., and Handa, J.T. (2016). An easy, rapid method to isolate RPE cell protein from the mouse eye. Exp. Eye Res. 145, 450-455. https://doi.org/10.1016/j.exer.2015.09.015
  50. Wu, Y., Li, X., Zhu, J.X., Xie, W., Le, W., Fan, Z., Jankovic, J., and Pan, T. (2011). Resveratrol-activated AMPK/SIRT1/autophagy in cellular models of Parkinson's disease. Neurosignals 19, 163-174. https://doi.org/10.1159/000328516
  51. Wyrsch, P., Blenn, C., Bader, J., and Althaus, F.R. (2012). Cell death and autophagy under oxidative stress: roles of poly(ADP-Ribose) polymerases and Ca(2+). Mol. Cell. Biol. 32, 3541-3553. https://doi.org/10.1128/MCB.00437-12
  52. Yetimakman, A.F., Oztarhan, K., and Aydogan, G. (2014). Comparison of tissue Doppler imaging with MRI t2* and 24-hour rhythm holter heart rate variability for diagnosing early cardiac impairment in thalassemia major patients. Pediatr. Hematol. Oncol. 31, 597-606. https://doi.org/10.3109/08880018.2014.891681
  53. Yoshii, S.R. and Mizushima, N. (2017). Monitoring and measuring autophagy. Int. J. Mol. Sci. 18, 1865. https://doi.org/10.3390/ijms18091865

Cited by

  1. SIRT1/SIRT3 Modulates Redox Homeostasis during Ischemia/Reperfusion in the Aging Heart vol.9, pp.9, 2020, https://doi.org/10.3390/antiox9090858
  2. The Aging Stress Response and Its Implication for AMD Pathogenesis vol.21, pp.22, 2020, https://doi.org/10.3390/ijms21228840
  3. Quercetin Alleviates the Accumulation of Superoxide in Sodium Iodate-Induced Retinal Autophagy by Regulating Mitochondrial Reactive Oxygen Species Homeostasis through Enhanced Deacetyl-SOD2 via the Nr vol.10, pp.7, 2020, https://doi.org/10.3390/antiox10071125
  4. Iron overload inhibits cell proliferation and promotes autophagy via PARP1/SIRT1 signaling in endometriosis and adenomyosis vol.465, 2020, https://doi.org/10.1016/j.tox.2021.153050