• Title/Summary/Keyword: poly(3-hydroxybutyrate)

Search Result 127, Processing Time 0.027 seconds

Effect of C/N ratio on polyhydroxyalkanoates (PHA) accumulation by Cupriavidus necator and its implication on the use of rice straw hydrolysates

  • Ahn, Junmo;Jho, Eun Hea;Nam, Kyoungphile
    • Environmental Engineering Research
    • /
    • v.20 no.3
    • /
    • pp.246-253
    • /
    • 2015
  • The effects of carbon-to-nitrogen (C/N) ratio in simulated rice straw hydrolysates using glucose and ammonium chloride on polyhydroxyalkanoates (PHA) accumulation by Cupriavidus necator was investigated. In general, PHA accumulation rate was higher under higher degrees of N-deficient conditions (e.g., C/N ratio of 360:1) than lower degrees of N-deficient conditions (e.g., C/N ratio of 3.6:1 and 36:1). Also, the most PHA accumulation was observed during the first 12 h after the PHA accumulation initiation. This study showed that the similar PHA accumulation could be achieved by using different accumulation periods depending on C/N ratios. N source presence was important for new cell production, supported by approximately ten times greater PHA accumulation under the N-deficient condition ($NH_4Cl$ 0.01 g/L) than the N-free (without $NH_4Cl$) condition after 96 h. C/N ratio of the rice straw hydrolysate was approximately 160:1, based on the glucose content, and this accumulated $0.36{\pm}0.0033g/L$ PHA with PHA content of $21{\pm}3.1%$ after 12 h. Since external C or N source addition for C/N ratio adjustment increases production cost, an appropriate accumulation period may be used for PHA accumulation from organic wastes, based on the PHA accumulation patterns observed at various C/N ratios and C and N concentrations.

Polyhydroxyalkanoate Chip for the Specific Immobilization of Recombinant Proteins and Its Applications in Immunodiagnostics

  • Park, Tae-Jung;Park, Jong-Pil;Lee, Seok-Jae;Hong, Hyo-Jeong;Lee, Sang-Yup
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.2
    • /
    • pp.173-177
    • /
    • 2006
  • In this study, a novel strategy was developed for the highly selective immobilization of proteins, using the polyhydroxyalkanoate (PHA) depolymerase substrate binding domain (SBD) as an active binding domain. In order to determine the appropriacy of this method for immunodiagnostic assays, the single-chain antibody (ScFv) against the hepatitis B virus (HBV) preS2 surface protein and the severe acute respiratory syndrome coronavirus (SARS-CoV) envelope protein (SCVe) were fused to the SBD, then directly immobilized on PH A-coated slides via microspotting. The fluorescence-labeled HBV antigen and the antibody against SCVe were then utilized to examine specific interactions on the PHA-coated surfaces. Fluorescence signals were detected only at the spotted positions, thereby indicating a high degree of affinity and selectivity for their corresponding antigens/antibodies. Furthermore, we detected small amounts of ScFv-SBD (2.7 ng/mL) and SCVe-SBD fusion proteins (0.6ng/mL). Therefore, this microarray platform technology, using PHA and SBD, appears generally appropriate for immunodiagnosis, with no special requirements with regard to synthetic or chemical modification of the biomolecules or the solid surface.

EPS Production, PHB Accumulation and Abiotic Stress Endurance of Plant Growth Promoting Methylobacterium Strains Grown in a High Carbon Concentration

  • Woo, Sung-Man;Subramanian, Parthiban;Ramasamy, Krishnamoorthy;Joe, M. Melvin;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.4
    • /
    • pp.572-581
    • /
    • 2012
  • In this study, we compared growth pattern, floc yield, Exo-polysaccharides (EPS) production, Poly-${\beta}$-hydroxybutyrate (PHB) accumulation, resistance to osmotic and acid stress in Methylobacterium strains CBMB20, CBMB27, CBMB35, and CBMB110. Modified high C:N ratio medium denoted as HCN-AMS medium was used with a C:N ratio of 30:1. The HCN-AMS medium favored increased growth in all the studied strains. All Methylobacterium strains tested positive for EPS production and showed positive fluorescence with calcoflour stain. Elevated levels of EPS production from 4.2 to 75.0% was observed in HCN-AMS medium. Accumulation of PHB in HCN-AMS medium increased by 3.8, 36.7, and 12.0% in strains CBMB27, CBMB35, and CBMB110 respectively. Among the abiotic stresses, osmotic stress-induced growth inhibition of Methylobacterium strains was found to be lowered when grown in HCN-AMS medium. Likewise, growth inhibition due to acid stress at pH 5.0 was lower for strains grown in HCN-AMS medium compared to growth in AMS medium. Enhanced survivability under stress conditions may be attributed to the high EPS and PHB production at increased carbon concentration in the growth medium.

Inhella inkyongensis gen. nov., sp. nov., a New Freshwater Bacterium in the Order Burkholderiales

  • Song, Jae-Ho;Oh, Hyun-Myung;Lee, Jung-Sook;Woo, Seung-Buhm;Cho, Jang-Cheon
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.1
    • /
    • pp.5-10
    • /
    • 2009
  • A freshwater bacterium, designated $IMCC1713^T$, was isolated from a highly eutrophic artificial pond. Cells of the strain were Gram-negative, chemoheterotrophic, poly-$\beta$-hydroxybutyrate granule containing and obligately aerobic short rods that were motile with a single polar flagellum. The 16S rRNA gene sequence similarity analysis showed that the novel strain was most closely related to the species Roseateles depolymerans (96.3%), Mitsuaria chitosanitabida (96.2%), Ideonella dechloratans (96.2%), and Pelomonas saccharophila (96.1%) in the Sphaerotilus-Leptothrix group within the order Burkholderiales. Phylogenetic trees based on 16S rRNA gene sequences indicated that the isolate formed an independent monophyletic clade within the order Burkholderiales. The relatively low DNA G+C content (57.4mol%), together with several phenotypic characteristics, differentiated the novel strain from other members of the Sphaerotilus-Leptothrix group. From the taxonomic data, therefore, the strain should be classified as a novel genus and species, for which the name Inhella inkyongensis gen. nov., sp. nov. is proposed. The type strain of the proposed species is strain $IMCC1713^T$ (=KCTC $12791^T$=NBRC $103252^T$=CCUG $54308^T$).

Fabrication and Characterization of Thermo-responsive Nanofibrous Surfaces Using Electron Beam Irradiation (전자선 조사에 의한 온도응답성 나노섬유 표면의 제조 및 특성분석)

  • Jeon, Hyeon-Ae;Oh, Hwan-Hee;Kim, Young-Jin;Ko, Jae-Eok;Chung, Ho-Yun;Kang, Inn-Kyu;Kim, Won-Il;Kwon, Oh-Hyeong
    • Polymer(Korea)
    • /
    • v.32 no.4
    • /
    • pp.359-365
    • /
    • 2008
  • We have fabricated a novel thermo-responsive nanofibrous surfaces by grafting PIPAAm by electron beam irradiation onto poly(3-hydroxybutyrate-co-3-hydroxyvalerate)(PHBV) nanofibrous mats. The electrospun PHBV nanofiber structures revealed randomly aligned fibers with average diameter of 400 nm. Increased atomic percent of nitrogen was observed on the PIPAAm-grafted PHBV mats after electron beam irradiation determined by ESCA. The amounts of PIPAAm-grafted onto PHBV films were $6.49{\mu}g/cm^2$ determined by ATR-FTIR. The PIPAAm-grafted surfaces exhibited decreasing contact angles by lowering the temperature from 37 to $20^{\circ}C$, while ungrafted PHBV surfaces had negligible contact angle change. This result indicates that PIPAAm surfaces, which are hydrophobic at the higher temperature, became markedly more hydrophilic in response to a temperature reduction due to spontaneous hydration of the surface-grafted PIPAAm. Thermo-responsive nanofibers showed good tissue compatibility. Cultured cells were well detached and recovered from the surfaces by changing culture temperature from 37 to $20^{\circ}C$.

Marine Blue-green Algae in Korea (II) (한국 해산 남조류 (II))

  • Yu, Sun-Ae;Chae, Seung-Mun;Lee, Gi-Wan
    • The Journal of Natural Sciences
    • /
    • v.6 no.1
    • /
    • pp.5-39
    • /
    • 1993
  • The Blue-green algae collected from whole coasts of Korea were investigated morphotaxonomically in order to list up Korean marine Cyanophyta and clarify their taxnomic position. As a result, 36 species, 20 genus, 6 families belonging to 3 orders were identified. Among these, 14 species were recorded for the first time in Korea. They are Chroococcus minutus (K$\"{u}$tzing) N$\"{a}$geli, Merismopedia punctata Meyen, Microcystis ichtyoblabe K$\"{u}$zing, Dermocarpa leibleiniae (Reinsch) Born. et Thur., Hydrocoleum confluens (Setchell et Gardner) Drouet, Lyngbya sordida (Zanard.) Gomont, Phormidium forveolarum (Mont.) Gomont, Phormidium hansgieri Schmidle, Skujaella hildebrandtii (Gomont.) de Toni, Sphaeronema lithophila (Ercegovic) Umezaki, Spirulina tenerrima K$\"{u}$tzing, Hormothamnion enteromorphoides Grunow, Michrochaete aeruginea Batters, Michrochaete grisea Thuret ex Born. et flah.. Using the phase contrast microscope and the Nomarski interference micrope, we made photomicrographs of minute blue green algae. The cellular inclusions especially PHB(poly-$\SS$-hydroxy-butyrate) granules of the blue-green algae identified were investigated. The species clearly characteriged to have PHB granule were Lyngbya confervoides, L. semiplena, Phormidium corium, Sirocoleum kurzii, Hormothamnion enteromorphoides and Calothrix crustacea. These result would be fundamental data for estabilishing phylogenetic system of blue-green algae based on physio-biochemical characteristics in future.

  • PDF

A Research and Application of Polyhydroxyalkanoates in Biosensor Chip (생분해성 고분자, 폴리하이드록시알카노에이트를 이용한 바이오센서 칩 연구와 그 응용)

  • Park, T.J.;Lee, S.Y.
    • KSBB Journal
    • /
    • v.22 no.6
    • /
    • pp.371-377
    • /
    • 2007
  • Polyhydroxyalkanoates (PHAs) are a family of microbial polyesters that can be produced by fermentation from renewable resources. PHAs can be used as completely biodegradable plastics or elastomers. In this paper, novel applications of PHAs in biosensor are described. A general platform technology was developed by using the substrate binding domain (SBD) of PHA depolymerase as a fusion partner to immobilize proteins of interest on PHA surface. It could be shown that the proteins fused to the SBD of PHA depolymerase could be specifically immobilized onto PHA film, PHA microbead, and microcontact printed PHA surface. We review the results obtained for monitoring the specific interaction between the SBO and PHA by using enhanced green fluorescent protein, red fluorescent protein, single chain antibody against hepatitis B virus preS2 surface protein and severe acute respiratory syndrome coronavirus surface antigen as model proteins. Thus, this system can be efficiently used for studying protein-protein and possibly protein-biomolecule interactions for various biotechnological applications.