• Title/Summary/Keyword: poly(${\varepsilon}$-caprolactone)

Search Result 121, Processing Time 0.027 seconds

Polycaprolactone Nanofiber Mats Fabricated Using an Electrospinning Process Supplemented with a Chemical Blowing Agent (전기방사공정과 발포제를 이용한 Polycaprolactone 나노섬유 지지체 제작)

  • Kim, Geun-Hyung;Yoon, Hyeon;Lee, Haeng-Nam;Park, Gil-Moon
    • Polymer(Korea)
    • /
    • v.32 no.5
    • /
    • pp.458-464
    • /
    • 2008
  • A successful scaffold should have a highly porous structure and good mechanical stability. High porosity and appropriate pore size provide structural matrix for initial cell attachment and proliferation enabling the exchange of nutrients between the scaffold and environment. In this paper the highly porous scaffold of poly(${\varepsilon}$-caprolactone) electrospun nanofibers could be manufactured with an auxiliary electrode and chemical blowing agent (BA) under several processing conditions, such as the concentration of PCL solution, weight percent of a chemical blowing agent, and decomposition time of a chemical blowing agent. To attain stable electrospinnability and blown nanofiber mats having high microporosity and large pore, a processing condition, 8wt% of PCL solution and 0.5wt% of a chemical blowing agent under $100^{\circ}C$ and decomposition time of $2{\sim}3\;s$, was used. The growth characteristic of human dermal fibroblasts cells cultured in the mats showed the good adhesion and proliferation on the blown mat compared to a normal electrospun mat.

Metal Surface Coating Using Electrospray of Biodegradable Polymers and $\alpha$-Lipoic Acid Release Behavior for Drug-Eluting Stents (생분해성 고분자의 전기분사를 이용한 약물방출 스텐트용 금속표면 코팅 및 ALA방출 거동)

  • Kim, Dong-Min;Lee, Bong-Soo;Park, Cheol-Ho;Park, Kwi-Deok;Son, Tae-Il;Jeong, Myeong-Ho;Han, Dong-Keun
    • Polymer(Korea)
    • /
    • v.34 no.2
    • /
    • pp.178-183
    • /
    • 2010
  • Medical metal stents inserted to patients with a cardiovascular disease associated with coronary artery system have relatively increased the survival rate. The development of new stents is, however, urgently required due to restenosis and late thrombosis generated in metal stents. To solve these problems, the biodegradable polymers such as poly(lactide-co-glycolide) (PLGA), poly(L-lactide)(PLLA), and poly ($\varepsilon$-caprolactone)(PCL) were mixed with alpha lipoic acid (ALA), which is well known to inhibit the proliferation of neointimal hyperplasia. Subsequently, the ALA-loaded polymers were coated on stainless steel by electrospray. The drug-eluting behaviors from the coated polymers were investigated according to kinds and concentrations of polymers, spray rates, and kinds of solvents. The drug-eluting rate from PCL with the lowest glass transition temperature was the fastest among three polymers and followed by PLGA and PLLA. The surface roughness increased as the spray rate was increased and also the drug-eluting rate was affected by kinds of solvents with different boiling point. It is expected that drug-eluting stent (DES) coated with ALA-loaded polymers can be applied practically for clinical applications by controlling the behavior of drug release.

In vitro biocompatibility of a cement compositecontaining poly ($\varepsilon$-caprolactonemicrosphere) (PCL)

  • Jyoti, Md. Anirban;Min, Young-Ki;Lee, Byong-Taek;Song, Ho-Yeon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.42.1-42.1
    • /
    • 2009
  • In recent years, it has been tried to develop the efficacy and bioactivity of Calcium Phosphate cements(CPC) as injectable bone substitute (IBS) by reinforcing them through varying the amount in its compositions and relative concentrations or adding other additives. In this study, the biocompatibility of are inforced Calcium Phosphate-Calcium Sulfate injectable bone substitute (IBS)containing poly ($\varepsilon$-caprolactone)PCL microspheres was evaluated which consisted of solution chitosan and Na-citrate as liquid phase and tetra calcium phosphate (TTCP), dicalciumphosphate anhydrous (DCPA) powder as the solid phase. The in vitrobiocompatibility of the IBS was done using MTT assay and Cellular adhesion and spreading studies. The in vitro experiments with simulated body fluid (SBF) confirmed the formation of apatite on sample surface after 7 and 14 days of incubation in SBF. SEM images for one cell morphologies showed that the cellular attachment was good. MG-63 cells were found to maintain their phenotype on samples and SEM micrograph confirmed that cellular attachment was well. In vitro cytotoxicity tests by an extract dilution method showed that the IBS was cytocompatible for fibroblast L-929.

  • PDF

Study on Biocompatibility and Morphology with Hydrolysis Degradation of Poly(ester amide) derived from Glycine and/or 4-Aminobutyric acid (Glycine and/or 4-aminobutyric acid로부터 유도된 Poly(ester amide)의 생체 적합성 및 분해에 따른 형태학적 고찰)

  • 한상일;임승순
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2002.04a
    • /
    • pp.49-52
    • /
    • 2002
  • 합성 고분자의 생분해는 환경 보존이라는 측면에서 중요시 되고 있으며 봉합사나 bone fixation, 그리고 implant와 같은 의학적 응용면에서도 상당한 관심의 대상이 되어오고 있다 glycolic acid, L-lactic acid, $\varepsilon$-caprolactone에 근거하는 지방족 폴리에스터는 생분해성 봉합사로서 응용되고 있으나 여전히 열적, 기계적 가공특성과 같은 적정특성들이 부족하다.$^1$ 한편 폴리아마이드는 유사한 구조를 갖는 폴리에스터와 비교할 때에 상대적으로 높은 유리전이온도와 높은 융점을 가지고 있는 반면 높은 흡습성으로 인한 물성저하가 야기될 수 있다. (중략)

  • PDF

Synthesis and characterization of ABA types tri-block copolymers derived from p-dioxanone, ${\varepsilon}-caprolactone$ and poly(ethylene glycol)

  • Remant Bahadur K.C.;Bhattarai Shanta Raj;Aryal Santosh;Khil, Myung-Seob;Kim, Hak-Yong;Lee, Douk-Rae
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.255-255
    • /
    • 2006
  • Polymeric nanoparticles are recognized as promising drug carriers [1]. Here, novel tri-block copolymers based on poly PPDO, PCL and PEG were synthesized and employed for the formulation of reproducible polymeric nanoparticles [2]. To estimate the feasibility of the polymer to form polymeric nanoparticles, nanoparticles were prepared by co-solvent evaporation technique. Polymerization and structural features of the polymer were analyzed by different physico-chemical techniques. Existence of hydrophobic domains as a core of nanoparticles was characterized by $^{1}H-NMR$ spectroscopy, and further confirmed by fluorescence technique using pyrene as probe.

  • PDF

Synthesis and Characterization of Biodegradable MethoxyPoly(ethylene glycol)-Poly$(\varepsilon-caprolactone-co-L-lactide)$ Block Copolymers (메톡시폴리(에틸렌 글리콜)-폴리(카프로락톤-co-L-락타이드) 공중합체의 합성 및 특성 분석)

  • Hyun Hoon;Cho Young Ho;Jeong Sung Chan;Lee Bong;Kim Moon Suk;Khang Gilson;Lee Hai Bang
    • Polymer(Korea)
    • /
    • v.30 no.1
    • /
    • pp.28-34
    • /
    • 2006
  • A series of methoxypoly(ethylene glycol) $(MPEG)-poly(\varepsilon-co-L-lactide)$ (PCLA) diblock copolymers were synthesized by ring-opening polymerization of a mixture of $\varepsilon-caprolactone$ and L-lactide with different ratios in the presence of $Sn(Oct)_2$. The characterization of MPEG-PCLA diblock copolymers were examined by $^1H-NMR$, GPC, DSC, and XRD. Kinetic study on ring-opening polymerization of monomer mixtures was carried out in various conditions such as a variation with polymerization time, amount of catalyst, and temperature. The highest conversion obtained in 1.2 ratic of initiator venn catalyst at $110\;^{\circ}C$. The biodegradable characterization of MPEG-PCLA diblock copolymers in aqueous solution was carried out by using GPC for $1\~14$ weeks. The biodegradability of MPEG-PCLA diblock copolymers increased as the L-lactide content of diblock copolymers increased. In conclusion, we confirmed the dependence of polymerization rate according to various conditions. In addition, we can control the biodegradability of MPEC-PCLA diblock copolymers by changing the ratio of PCL and PLA block segment.

pH-Induced Micellization of Biodegradable Block Copolymers Containing Sulfamethazine

  • Shim, Woo-Sun;Lee, Jae-Sung;Lee, Doo-Sung
    • Macromolecular Research
    • /
    • v.13 no.4
    • /
    • pp.344-351
    • /
    • 2005
  • pH-sensitive block copolymers were synthesized by coupling reaction of sulfamethazine and amphiphilic diblock copolymer, and their micellization-demicellization behavior was investigated. Sulfamethazine (SM), a derivative of sulfonamide, was introduced as a pH responsive moiety while methoxy poly(ethylene glycol)poly(D,L-lactide) (MPEG-PDLLA) and methoxy poly(ethylene glycol)-poly($D,L-lactide-co-{\varepsilon}-caprolactone$) (MPEG-PCLA) were used as biodegradable amphiphilic diblock copolymers. After the sulfamethazine was carboxylated by the reaction with succinic anhydride, the diblock copolymer was conjugated with sulfamethazine by coupling reaction in the presence of DCC. The critical micelle concentration (CMC) and mean diameter of the micelles were examined at various pH conditions through fluorescence spectroscopy, dynamic light scattering and transmission electron microscopy. For MPEG-PDLLA-SM and MPEG-PCLA-SM solutions, the pH-dependent micellization-demicellization was achieved within a narrow pH band, which was not observed in the MPEG-PDLLA and MPEG-PCLA solutions. The micelle showed a spherical morphology and had a very narrow size distribution. This pH-sensitive block copolymer shows potential as a site-targeted drug carrier.

Amphotericin B Aggregation Inhibition with Novel Nanoparticles Prepared with Poly(${\varepsilon}$-caprolactone)/Poly(N,N-dimethylamino-2-ethyl methacrylate) Diblock Copolymer

  • Shim, Yong-Ho;Kim, You-Chan;Lee, Hong-Joo;Bougard, Francois;Dubois, Philippe;Choi, Ki-Choon;Chung, Chung-Wook;Kang, Dae-Hwan;Jeong, Young-Il
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.1
    • /
    • pp.28-36
    • /
    • 2011
  • Diblock copolymers composed of poly(${\varepsilon}$-caprolactone) (PCL) and poly(N,N-dimethylamino-2-ethyl methacrylate) (PDMAEMA), or methoxy polyethylene glycol(PEG), were synthesized via a combination of ring-opening polymerization and atom-transfer radical polymerization in order to prepare polymeric nanoparticles as an antifungal drug carrier. Amphotericin B (AmB), a natural antibiotic, was incorporated into the polymeric nanoparticles. The physical properties of AmB-incorporated polymeric nanoparticles with PCL-b-PDMAEMA and PCL-b-PEG were studied in relation to morphology and particle size. In the aggregation state study, AmB-incorporated PCL-b- PDMAEMA nanoparticles exhibited a monomeric state pattern of free AmB, whereas AmB-incorporated PCL-b- PEG nanoparticles displayed an aggregated pattern. In in vitro hemolysis tests with human red blood cells, AmBincorporated PCL-b-PDMAEMA nanoparticles were seen to be 10 times less cytotoxic than free AmB (5 ${\mu}g$/ml). In addition, an improved antifungal activity of AmBincorporated polymeric nanoparticles was observed through antifungal activity tests using Candida albicans, whereas polymeric nanoparticles themselves were seen not to affect activity. Finally, in vitro AmB release studies were conducted, proving the potential of AmB-incorporated PCL-b-PDMAEMA nanoparticles as a new formulation candidate for AmB.

Development of Artificial Vessels with Autologous Bone Marrow Cells and Polymers (자기 골수세포와 고분자 폴리머를 이용한 인공 혈관의 개발)

  • Choi, Jin-Wook;Lim, Sang-Hyun;Hong, You-Sun;Kim, Byung-Soo
    • Journal of Chest Surgery
    • /
    • v.41 no.2
    • /
    • pp.160-169
    • /
    • 2008
  • Bakcground: To treat anastomosis site stenosis and occlusion of the artificial vessels used in vascular surgery, tissue-engineered artificial vessels using autologous cells have been constructed. We developed artificial vessels using a polymer scaffold and autologous bone marrow cells and performed an in vivo evaluation. Material and Method: We manufactured a vascular scaffold using biodegradable PLCL (poly lactide-co-${\varepsilon}$-caprolactone) and PGA (poly glycolic acid) fibers. Then we seeded autologous bone marrow cells onto the scaffold. After implantation of the artificial vessel into the abdominal aorta, we performed an angiography 3 weeks after surgery. After the dogs were euthanized we retrieved the artificial vessels and performed histological analysis. Result: Among the six dogs, 2 dogs died of massive bleeding due to a crack in the vascular scaffold 10 days after the operation. The remaining four dogs lived for 3 weeks after the operation. In these dogs. the angiography revealed no stenosis or occlusion at 3 weeks after the operation. Gross examination revealed small thrombi on the inner surface of the vessels and the histological analysis showed three layers of vessel structure similar to the native vessel. Immunohistochemical analysis demonstrated regeneration of the endothelial and smooth muscle cell layers. Conclusion: A tissue engineered vascular graft was manufactured using a polymer scaffold and autologous bone marrow cells that had a structure similar to that of the native artery. Further research is needed to determine how to accommodate the aortic pressure.

Physical Characteristic and In vitro Transdermal Delivery of PCL-b-PEG Micelles Containing Quercetin and Rutin (Quercetin과 Rutin을 함유하는 PCL-b-PEG 고분자 미셀의 특성 및 피부 흡수에 관한 In vitro 연구)

  • Lim, Gyu-Nam;Kim, Sun-Young;Kim, Min-Ji;Park, Soo-Nam
    • Polymer(Korea)
    • /
    • v.36 no.4
    • /
    • pp.420-426
    • /
    • 2012
  • In this study, we prepared polymer micelles containing quercetin and rutin, known as antioxidants, using poly(${\varepsilon}$-caprolactone)-b-poly(ethylene glycol), and evaluated in vitro skin permeation of the active materials. Quercetin and rutin loaded micelles were characterized by DSC (differential scanning calorimetry), HPLC (high performance liquid chromatography) and DLS (dynamic light scattering) measurements. The particle size of the polymer micelles increased in a concentration dependent manner (0.5~2.0% PCL-b-PEG). The Zeta potential of quercetin and rutin loaded micelles remained constant. To evaluate the skin penetration of PCL-b-PEG micelles, Franz diffusion cell experiment was performed. The aqueous solutions of quercetin and rutin were used as the control groups. Quercetin and rutin loaded PCL-b-PEG micelles showed more efficient skin permeation than the control groups. Safety assessment (patch test) of quercetin and rutin loaded PCL-b-PEG micelles on skin was performed to test application possibility of the polymer micelles to cosmetics. Any adverse symptoms were not observed.